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ABSTRACT

This thesis analyzes the modelling of visual cognitive representations based
on extracting cognitive components from the MNIST dataset of handwritten
digits using simple unsupervised linear and non-linear matrix factorizations
both non-negative and unconstrained based on gradient descent learning.

We introduce two different classes of generative models for modelling the cog-
nitive data: Mixture Models and Deep Network Models.

Mixture models based on K-Means, Guassian and factor analyzer kernel func-
tions are presented as simple generative models in a general framework. From
simulations we analyze the generative properties of these models and show
how they render insufficient to proper model the complex distribution of the
visual cognitive data.

Motivated by the introduction of deep belief nets by Hinton et al. [12] we
propose a simpler generative deep network model based on cognitive compo-
nents. A theoretical framework is presented as individual modules for building
a generative hierarchical network model.

We analyze the performance in terms of classification and generation of MNIST
digits and show how our simplifications compared to Hinton et al. [12] leads
to degraded performance. In this respect we outline the differences and con-
jecture obvious improvements.

Keywords : Cognitive Component Analysis, Generative Models, Matrix Factoriza-
tion, Mixture Models, EM-algorithm, Deep Network models
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NOMENCLATURE

Throughout the thesis the following notation is used.

x : Scalar
x : Column vector
xi,n : The n’th datasample at subcoordinate i.
X : Matrix

α : Regulation term for the sources s.
β : Regulation term for the codebook matrix A.
γ : Regulation term for class. weight matrix W.
σ2 : Balance Parameter.
d : Dimension of features / number of latent variables.
h : Hidden or latent variable.
m : Index for elements in x.
n : Index for samples.
r : Index for features, column vectors in A.
y : Class conditional probability.
M : Dimension of data.
N : Number of datasamples.
s : Latent source or codevector.
t : Target vector, binary.
x : Observed sample.
A : Codebook with column vectors as features.
H : Hidden variables as vectors.
S : Source matrix.
W : Weights used for classification.

E{·} : Expectation, statistical average.
p(x) : Probability distribution of x.
N (μ,Σ) : Gaussian distribution with mean μ and covariance matrix Σ.
H(x) : Entropy function of x.
Linc(·) : Incomplete Log-Likelihood.
Lc(·) : Complete Log-Likelihood.
KL

(
p(x) || p(y)

)
: Kullback-Leibler divergence.



1.1 Visual Cortex

1. INTRODUCTION

In the recent 50+ years the development of the computer has given us a tool with immense power. Problems,
which before seemed impossible or at least complex can now be solved within fractions of a second. Simple
mathematical tasks are solved easily by a computer superior to the human brain. Just compare the time to give
1
6 in decimals between a human (with a pencil, paper and a few minutes) and a computer. Most people might
not even give an answer, whereas a computer is virtually infinitely fast. But if the task is to recognize a song
from the radio or perhaps write zipcode digits on a letter, the human brain has superior skills and is hardly
challenged. A computer on the other hand requires advanced algorithms and may need considerable time to
perform the task if even possible.

Throughout the history and literature we have always thrived to investigate and analyze the ever complex
working of the brain in every aspect ranging from simple insect behavior to the cognition of the human mind.
The human brain and its intelligence has always been considered as a superior tool for information processing
and being able to describe its mysteries may serve as a foundation for developing complex computer based
algorithms in every aspect. We have indeed come a long way in every field such as psychology, medicine,
machine learning etc., but since every revelation always calls for new quests the ’finish-line’ will always be
ahead of us.

The processing of the brain can be analyzed in numerous ways and angles and in this thesis we will focus on
the field of modelling cognitive visual data. This is however not a new research field, plenty of literature and
numerous articles have described the visual processing system, refer to [1] [28] [13] [14] as a short reference.
Common of these articles is that their description only includes the relatively simple initial processing layers
(LGN and V1) and merely speculates on the further and vastly more complex processing of visual stimuli.

This thesis will try to enlighten the modelling of visual data by introducing Cognitive Component Analysis
(COCA) as a tool for analyzing and modelling cognitive learning. A mathematical framework will be presented,
implemented in MATLAB and finally evaluated through simulations on small images of handwritten digits (the
MNIST dataset). A short quantitative introduction to the visual cortex is described next to serve as a small
background.

1.1 Visual Cortex

Understanding the sensory neurons of the visual system in the brain has received much attention as a primary
research area in the last many decades. The main approach is attempting to model the sensory processing with
linear modelling based on the statistical properties of the environment. Here we will try to give a very short
overview of the main issues for the neurological visual processing system based on [1] [13] [14] [15] [28].

The visual cortex is part of the neural visual center of the brain and occupies about one third of the surface of
the cerebral cortex in humans, illustrated in figure 1.1 1.

The signal path in the brain can be described very shortly from a macro-perspective point of view. Visual stimuli
from the natural world enters the eye and is projected on the retina (photo sensitive backside of the eye) and
from here the Lateral Geniculate Nucleus (LGN) receives the visual information. The LGN is considered the pri-
mary processor of visual information and together with the retina, they are thought to eliminate the correlation
and remove redundancy in the visual stimuli as stated by Hoyer & Hyvärinen [14] and Simoncelli & Olshausen
[28]. The image data then still contains obvious structures like lines, edges contours etc. after decorrelating
and thus in terms of efficient coding in the neurons much work is still to be done [28]. Redundancy reduction
techniques in terms of Principal Component Analysis (PCA) are shortly presented in appendix A.1.

From here the signal is passed to the visual cortex, which very simplified can be split up in a ventral and dorsal
stream with numerous hierarchical levels of increasingly complex processing. The ventral stream is believed to
be responsible for object recognition (also called the ’what’ stream), where the dorsal stream is representing
movement (also called the ’where’ stream). The depth of the hierarchical layers are thought to extend to 30
levels or more. The initial layers of both streams are denoted V1-V5 and are only the tip of the iceberg in visual

1Image taken from http://www.nmr.mgh.harvard.edu/∼rhoge/HST583/doc/HST583-Lab1.html
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1.1 Visual Cortex

cognition. We will venture to try to give a short and very simplified description of this complex processing of
initial these layers. The V1 area (primary visual cortex) is the first and most simple of the levels. Due to the
pioneering work of by Hubel and Wiesel [15] based on experiments with macaque monkeys exposed to visual
input much is known about the processing of visual input in V1.

The neurons in V1 can be split up in simple, complex

Figure 1.1: Physical outline of the visual cortex.

and hypercomplex cells, where the simple cells are thought
to perform some linear filtering tuned to simple edge
detection of the visual input. The spatial characteristics
of these elongated filters (receptive fields) can be de-
scribed as having oriented and bandpass features [13]
[28] [5]. It is exactly this Gabor-like structure in the
simple cells that gives the exhibitory and inhibitory func-
tionality suitable for edge detection. The complex and
hypercomplex cells in V1 perform similar filtering, but
are without clear excitatory or inhibitory zones (i.e. are
not tuned for edge detection) and are more sensitive to
complex non-local structures, e.g. two edges at right
angles to each other in a yet larger region of the visual
field. This suggest that the complex and hypercomplex
cells receive their input from lower level simple neurons
in V1 [15].

It has been argued by Simoncelli & Olshausen [28] that
neural responses must be statistically independent in or-
der to avoid duplication of information in the neurons
and hence for the coding of information to be efficient.
Perhaps for the purpose of accurate spatial encoding,
neurons in V1 have the smallest receptive field size of

any visual cortex regions. By applying the linear Independent Component Analysis (ICA) model with indepen-
dence as the constraint to natural images leads to features similar to those found in receptive fields of simple
cells in V1 [1] [13] [28]. Similar results has also been found using Linear Sparse Coding (LSC), where image
data is decomposed into a linear model under the constraint that the components must to be as sparse as pos-
sible [13] [25]. Additional cells in V1 are suspected to extract color information inside blobs (columns of cells
with circular receptive fields) and further to hold binocular cells responsible for stereopsis or depth information.

Further neural processing of the sensory input based on the architecture of the visual cortex suggests a hi-
erarchical organization, where the neurons becomes increasingly selective to more complex image structures
[28]. The second region denoted V2 is the first level within the visual association area. The responses of many
V2 neurons are also modulated by more complex properties, such as the orientation of illusory contours and
whether the stimulus is part of the figure or the ground. Properties of cells in the next layer V3 offer few clues as
to its function. Most are selective for orientation and many are also tuned to motion and to depth, but relatively
few are color sensitive. The area in the deeper layer V4 contains many cells that are color selective, indicating
a role in color analysis. Still cells are also found with complex spatial and orientation tuning, suggesting that
the area is also important for spatial vision.

The deep level of V5 or middle temporal (MT) is the most prominent part of the cerebral cortex specialized
for analyzing visual motion and is hence part of the dorsal stream. Most cells in V5 are tuned to motion, and
the area can be divided into direction and ’axis of motion’ columns. The receptive fields in V5 are in addition
much larger than those in V1 making these cells inappropriate for object recognition as they would give a blurry
image.

Further processing at least in the ventral stream suggest neurons exhibit properties that are important for object
recognition. At the highest levels in this pathway, neurons in the inferior temporal cortex respond preferentially
to faces. Furthermore, lesions to these areas produce prosopagnosia, a deficit in face recognition.

Our description of the visual cortex reveals a sequential structure from V1 to V5. This is somewhat simplified
as the actual architecture is by far more complex with feedback and interlayer connections. To summarize
simple, complex and hypercomplex cells can work together to decompose the outlines of a visual image into
short segments, the basis of simple and complex object recognition. Higher level processing in V2-V5 are in

Page 2



1.2 Cognition and Cognitive Components

charge of increasingly complex structures and movement in the visual input 2. This multilayered hierarchical
architecture of the visual cortex is the very foundation for deep networks and serves as motivation to one of
models we build and analyze in this thesis.

The processing of the visual cortex for all levels suggests that localized oriented filters could be an optimal
extraction of features in modelling visual data. This approach leads to the motivation of analyzing cognitive
models in terms of cognitive components.

1.2 Cognition and Cognitive Components

The concept of cognition becomes evident in comparing or even describing the differences between the human
brain and a computer. The human perceptional systems can model complex multi-agent scenery based on a
broad spectrum of cues for analyzing perceptual input and separate individual signal producing agents, such as
speakers, gestures, affections etc. Computers are in contrast superior in solving problems based on strict rules
as opposed to cognitive input.

From the online version of Britannica cognition is defined as the "‘act or process of knowing"’ and continues

Cognition includes every mental process that may be described as an
experience of knowing (including perceiving, recognizing, conceiv-
ing, and reasoning), as distinguished from an experience of feeling
or of willing.

The process of grouping events or objects into classes or categories is fundamental to human cognition. In
machine learning the grouping of data based on labeled example is a widespread technique known as supervised
learning [4]. In contrast clustering data without a priori providing a set of labeled examples is an unsupervised
learning problem, where we use a set of general statistical rules to group the objects. For many real world data
sets the labeled structure inferred by unsupervised learning closely coincide with labels obtained from human
manual classification, i.e. labels derived from human cognition [8].

It has long been assumed that neurons adapted at evolutionary development and behavioral timescale to the
signal to which they are exposed [28]. This fact suggests that the receptive fields in the visual cortex has been
formed from unsupervised learning and coincide the our definition of cognitive components. We therefore base
our entire analysis on unsupervised learning as the fundament.

One of the more recent research fields is the discipline of Cognitive Component Analysis (COCA). The objective
in COCA is to perform unsupervised grouping of data such that the ensuing group-structure is well-aligned
with that resulting from human cognitive activity [8]. In other words cognitive components can be defined as
segments, which gives ’perceptual meaning’ to humans. As an example figure 1.2 illustrates how the image of
a 2 digit can be decomposed into subparts which are consistent with the intuitive segmentation performed by
a human and can hence be characterized as cognitive components according to our definition.

= ++ +

Figure 1.2: Split-up of the 2 digit into cognitive components.

Modelling cognitive components naturally leads to using generative models as the cognitive components then
form the basic generative weights or features to allow efficient representation. In using a generative model
we capture information used to model the complete structure of the observed data as opposed to a strictly
discriminative model, where only classification information is extracted. For class. purposes a generative model
holding efficient representing of the data has shown to have superior performance over discriminative models

2For a visual demo of the visual cortex, visit http://www.physpharm.fmd.uwo.ca/undergrad/medsweb/L2V123/M2-V123.swf.
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1.3 The Models

[11] [12]. In addition the linear filtering in the visual cortex serves as extra motivation for using generative
models for modelling cognitive data.

If we denote an observed M dimensional random variable x = {xm}Mm=1 a linear generative model is then
as the name implies defined as a model, which can be used to generate new random data x with the same
statistical properties as the observed x. This means we decompose the observed data x into

x = As (1.1)

where the matrix A = {ar}dr=1 is denoted the codebook holding generative features of x and the d dimensional
vector s is the corresponding latent source or encoding vector, which contains the weights of each feature ar

used to form x. The extraction of features through matrix decomposition in (1.1) means we can express the
observed x from a compressed coded vector s provided d < M leading to potentially less complex modelling of
the cognitive data as opposed to modelling x directly.

In the context of cognitive analysis we aim to decompose x such that the codebook A holds cognitive compo-
nents ar as features. This means the method used to decompose x must be able to extract cognitive components
and depending on the data type and context different methods can be used. If independence is an important
constrain to ensure efficient coding Independent Component Analysis (ICA) can be used to find cognitive com-
ponents. However the independence constrain in itself does not guarantee cognitive components, e.g. in the
context of phonemes it has been shown that ICA can extract cognitive features [6], whereas for color image
data ICA extracts localized Gabor-like filters [1] [14], which are hard to interpret visually and cannot be con-
sidered as cognitive components. For image data, which only contains non-negative pixels Non-Negative Matrix
Factorization (NMF) has shown to give features, which in simple B/W cases are similar to those in figure 1.2
and can be considered cognitive [13].

As extraction of cognitive components are performed subjectively, they may not necessarily be unique. The
exhibitory part of the structure-selective filters believed to be used in the processing in V1 of the visual cortex
as discussed earlier can for instance from a subjective point of view be considered as cognitive components. For
the complex and hypercomplex neurons in the primary visual cortex the inhibitory effect is believed to have
less impact, i.e. the negative or subtractive region is not essential. In addition the firing rates from neurons
cannot be negative [13] and it therefore seems justified to base our models on such non-negative component
features through NMF decomposition.

For true modelling of the receptive fields of the simple cells in V1 it is essential to obtain sparse oriented Gabor-
like features and for that purpose both ICA and an extended version of NMF has shown to give features similar
to V1 simple neurons [1] [13] [14]. In addition Ranzato et al. has achieved similar sparse features without
an independence constraint [25]. As a second approach we therefore base additional models on unconstrained
regulated matrix factorizations without independence constraint to encourage sparse (simple cells) or abstract
(hypercomplex cells) features with full dynamic range.

In our linear model (1.1) new data x can be generated from any random source vector s. In order to generate a
valid datapoint it is essential that a generated source maintains the correlation between the codebook elements
in A. In training a generative cognitive model it is crucial that the model captures this correlation and thus has
the potential to generalize to valid data not covered by the training set. We can further identify these sources as
representing valid cognitive data in dataspace. In contrast there exist sources s in dataspace, which are invalid
in terms of cognitive data (this split-up will be more evident later). We can therefore label the dataspace into
valid and an invalid areas and rephrase the learning task as to train the cognitive model to find the complex
boundary between valid and invalid dataspace.

To summarize an efficient cognitive generative model will in this respect capture the underlying correlation or
structure of the sources and generate new cognitive data. We propose two different models types as candidates
for such efficient cognitive models, namely The Mixture Models and Deep Network Models.

1.3 The Models

In modelling cognitive data x we build a generative model based on unsupervised learning and focus on two
different classes of models introduced below

Page 4



1.3 The Models

Mixture Models

From our linear representation of cognitive data x in (1.1) we can form a generative model by modelling the
distribution of the sources p(s). For this purpose we focus on the class of mixture models, where complex
models can be assembled from mixtures of simpler kernel based functions with few parameters. The modelling
strategy can be illustrated in a valid/invalid dataspace as in figure 1.3.

For probabilistic modelling a classic choice of a kernel

s1

s2

Figure 1.3: Gaussian based mixture models in a
valid/invalid divided source space.

function is the Gaussian probability distribution indi-
vidually parameterized for the mixture components, de-
noted K. This approach is typically very powerful for
modelling of ’localized’ data, since K(x, y) converges to
a constant for increasing distance ‖ x − y ‖. This how-
ever also sets a clear limitation when modelling ’high-
varying’ data, where a large amount of mixtures would
be needed for sufficient modelling.

In addition for high dimensional data the Gaussian dis-
tribution risk suffering from the curse of dimensionality,
where an exponentially increasing amount of samples
are needed to define the parameters with equal pre-
cision for increasing dimensions. To accommodate for
this limitation a kernel function based on the based on
the factor analyzer function can be used instead, where
a Gaussian distribution is modelled in sub-dimensional
space.

With simple mixture models using unsupervised learning we aim to model the sources representing valid cog-
nitive data capturing the cognitive correlation by the distribution p(s).

Deep Network Models

The class of Deep Network Models is based on multilayered non-linear generative functions, which does not
suffer from ’localized’ modelling as the mixture model does. Instead of building a deep network model from
the decomposition in (1.1), we introduce a non-linear generalized factorization given by

x = Af(s) (1.2)

where f(s) is a non-linear mapping function. This gives a far more adaptable model, where the linear factor-
ization (1.1) now becomes a special case with f(s) = s. In such case the multilayered architecture could be
collapsed into an equivalent 1-layer structure due to the linearity in (1.1) and thus the hierarchical structure is
no longer appropriate.

Throughout the literature the 2-layer network has traditionally been the preferred structure as opposed to
network with L > 2 layers. It has been shown empirically that multilayered networks are in fact considered
worse in performance than networks with only 2-layers mainly due to the poor solutions often achieved from
gradient-based optimizations from random initializations [2] [10].

Hinton et. al. has recently introduced a training algorithm for networks with multiple layers or Deep Belief Nets,
where each layer is trained separately in an unsupervised greedy fashion leading to a crude approximation
of an optimal solution. With such initialization of the network-layers the individual weights are afterwards
fine-tuned to retrofit the parameters in each layer [12]. This modelling of cognitive data has resulted in
representations lying in long ravines in subdimensional landscape leading to superior results in both generation
and classification tasks [12]. The basic concepts in these deep belief nets are outlined on section 4.1 as a
reference. Based on this approach deep network models has suddenly received wide attention as a promising
research area for generative and classification models and in particular for the MNIST dataset classification [2]
[12] [25].

The encouraging motivation for preferring multilayered architecture is the potential compact representation it
may give. It may also give rise to a more cognitive interpretation of the individual layers. Upper layers learn
and represent abstract concepts that explain the observation x, where lower layers extract ’low-level’ features
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[2]. That is simpler concepts are initially learned and build on to learn more abstract concepts for lower layers
[2]. This sequential processing is also believed occur in the brain as an potential optimal structure [28] and
are well-aligned with the believed architecture of the visual cortex.

With the motivation from the deep net by Hinton et al. we propose to build a simpler generative deep network
model, where each layer is trained separately unsupervised for modelling visual cognitive components. We
will present a set of modules for both generation and classification of visual data and with different modelling
properties, which can be used to assemble our deep network model. Our model is further simplified by not
conducting any subsequent fine-tuning of model parameters after individual training of the layers as opposed
to the deep belief net of Hinton et al.

In section 2 a theoretical framework of mixture models is formed and analyzed as the basis for the first type
of cognitive generative models. The mixture models are applied to the visual dataset MNIST in section 3 and
its performance evaluated in terms of generation of new data. Afterward deep network models are described
theoretically in section 4 as the second type of cognitive model. The network models are also subjected to the
MNIST dataset in section 5 and analyzed and evaluated in terms of generation and classification performance.
Concluding remarks are made in the final section 6.

Part of the MATLAB code used for the simulations is listed in appendix B. A complete reference to the MATLAB
code, dataset and results can be found on the associated data DVD.
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2.1 Linear Non-negative Matrix Factorization

2. MIXTURE MODELS

In the pursuit to generate valid data x based on our linear model x = As in (1.1), we can express the proba-
bilistically of the observed data p(x) as

p(x) =
∫

p(x, s) ds =
∫

p(x|s)p(s) ds (2.1)

where p(s) is the unknown prior distribution of the sources and the conditional distribution p(x|s) models a
Gaussian distribution representing our linear decomposition. This will be more evident later, refer to appendix
A.6 for details.

In this section we present and outline the class of mixture models based on unsupervised learning. We previ-
ously highlighted the importance of maintaining correlation of the cognitive components in the sources s and
for mixture models we aim to model this correlation and estimate valid sources from a density distribution of
the sources p(s) based on mixture models to approximate p(s).

Mixture models is a wide area with many clustering algorithms in all degrees of complexity. In this analysis we
will focus in primarily three simple mixture models

• K-Means clustering

• Mixture of Gaussians (MoG)

• Mixture of Factor Analyzers (MFA)

These mixture models will be presented in the following subsections. The paradigm in cognitive analysis is
as mentioned unsupervised learning, where given data is modelled without prior knowledge of any relation
or labeling. Obviously x can be decomposed in an infinitely number ways for our linear type of model and
before we introduce the mixture models themselves, we describe a linear unsupervised non-negative matrix
factorization for extracting features for our cognitive models.

2.1 Linear Non-negative Matrix Factorization

In certain real world applications, an observed dataset X can best be described as generated exclusively from
adding components and not necessarily being independent. A decomposition into non-negative parts may in
these cases give a more meaningful interpretation conceptually. Classic examples would be an RGB image,
where subcolors (R, G or B) are added constructively to generate a color or it could be the wordcount from a
document.

Non-Negative Matrix Factorization (NMF) seeks to factorize a matrix X = {xn}Nn=1, where xn is an M dimen-
sional vector, into a low rank, sparse, non-negative linear approximation on the form

X ≈ AS (2.2)

where the columns of A = {ar}dr=1 are the M dimensional basis vectors and the d × N matrix S holds the
encoding, where the desired rank d is chosen so that (m + N)d < mN . All matrices in (2.2) are under the
constraint not to include any negative elements.

If we assume the individual datasamples x are generated from (1.1) with additive Gaussian noise ε, we can
expand the linear model into x = As + ε, where the random variable ε is Gaussian distributed. This assumption
is related to the class of linear models as shown in appendix A.6, where the maximum likelihood estimate of
p(x|s) naturally leads to the least-squares cost function based on Euclidean distance. Thus to find the non-
negative factorizations of A and S, we seek to maximize the log-likelihood of p(x|s) and thus minimize a
cost-function given by
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2.2 K-Means Clustering

ELS =
1

2σ2
‖ X−AS ‖2 (2.3)

=
1

2σ2
‖ (X−AS)T (X−AS) ‖ (2.4)

=
1

2σ2
‖ XT X−XT AS− (AS)T X + (AS)T AS ‖ (2.5)

=
1

2σ2
‖ XT X− 2XT AS + (AS)T AS ‖ (2.6)

We can further formulate the update of A and S as to minimize (2.6) by calculating the 1st order derivative of
(2.3) and use a gradient descent type approach expressed as (only shown for the sources S)

Sr,n ← Sr,n −Δ
∂ELS

∂Sr,n
= Sr,n + ηr,n

[
(AT X)r,n − (AT AS)r,n

]
(2.7)

where we have assumed σ2 = 1, since optimizing (2.7) wrt. S is independent of σ2. To ensure a non-
negative update S the gradient in (2.7) does not guarantee non-negativity as it can point to any orthant in
multidimensional space. Instead we use a selective stepsize ηr,n as opposed to a constant such that gradient
directions leading to a negative orthant are suppressed. This can be achieved by setting ηr,n = Sr,n

(AT AS)r,n
and

thus we can rewrite the update of S and similarly for A to :

Sr,n ← Sr,n
(AT X)r,n

(AT AS)r,n
∧ Am,r ← Am,r

(XST )m,r

(ASST )m,r

(2.8)

where the fraction indicates a component-wise division of the matrices. This forms an iterative coordinate-
descent algorithm, where one parameter is updated, while the other is kept constant and vice versa. These
update rules further guarantee convergence to at least a local optimum as proven in [18]. Note that if X is
non-negative (i.e. contains only non-negative elements), the update of both A and S also remain non-negative.
The column vectors of encoding matrix A are in addition scaled to unity length during the iterations, i.e.
|ar| = 1 and sources s accordingly to keep values in reasonable dynamic range. This has no effect on the
updates equation, as it is a linear scaling in both the nominator and denominator of in (2.8). Refer to [17] and
[18] for a more detailed description on the update algorithm on NMF.

In the practical implementation the convergence speed is controlled dynamically by defining the step-size pa-
rameters η and ζ as exponents for the multiplicative the update rules. Hence we rewrite eq. (2.8) into

Sr,n ← Sr,n

[
(AT X)r,n

(AT AS)r,n

]η

∧ Am,r ← Am,r

[
(XST )m,r

(ASST )m,r

]ζ

(2.9)

During iterations the stepsizes η and ζ are boosted or increased in case of a successful decrease of the cost
function (2.3) and lowered if the step was too long resulting in an increase of the cost function ELS . The
practical implementation of NMF algorithm is provided as part of the SNMF2D toolbox from IMM 3 and is also
available on the DVD. Refer to [26] for a more detailed description of the algorithm in the SNMF2D toolbox.

2.2 K-Means Clustering

One of the simplest classes of unsupervised learning is Cluster Analysis, which as the name implies based on
clustering or data segmentation. The objective is to infer the structural properties of a given dataset X without
’labels’ by grouping similar datapoints into subsets or clusters, such that those within a cluster are more related
than those assigned to other clusters. In terms of building a generative model cluster analysis can be used to
provide a simple tool for modelling either the codebook elements A = {ar}dr=1 or the sources themselves s.

3Available at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/4521/zip/imm4521.zip.
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2.2 K-Means Clustering

To group N objects X = {xn}Nn=1 we can represent the similarity or dissimilarity between the datapoints in a
symmetrical N × N proximity matrix D = {di,i′}Ni,i′=1, where each element di,i′ holds the proximity between
the objects xi and xi′ and the diagonal dii = 0. If an object has several attributes (size, color, price etc.) is can
be convenient to weight these attributes individually to balance their influence. Assuming b attributes we can
express the elements in D as

di,i′ =
b∑

j=1

wj · dj(xij , xi′j) (2.10)

where
∑b

j=1 wj = 1 and dj denotes the attribute similarity measure. It is important to note that equal weights
for all attributes does not necessarily mean equal influence, since it depends on the relative contribution to the
average object dissimilarity measure. It can be shown that setting the weights to wj = 1/d̂j gives equal influence
to all attributes, where d̂j is the average dissimilarity of the j’th attribute given by d̂j = 1/N2

∑
i

∑
i′ dj(xij , xi′j)

[9]. A common similarity measure is the squared Euclidian distance given by

di,i′ =
p∑

j=1

wj · (xij − xi′j)2 (2.11)

where the average dissimilarity of the attributes become d̂j = 2 · varj . Thus the influence of the j’th attribute is
proportional to its variance over the dataset.

One of the most simple clustering methods using the squared Euclidian distance as a similarity measure is the
iterative descent type K-Means algorithm. The basic approach is to associate each M dimensional datapoint xn

to one and only one cluster k with mean vector μk = {μm,k}Mm=1 and based on these associations the mean of
each cluster μk is re-calculated in an iterative process. The similarity measure for the K-Means can be written
as

d(xn, μk) =
1
M

M∑
m=1

(
xm,n − μm,k

)2 =
1
M
‖ xn − μk ‖2 (2.12)

This approach forms the iterative loop and is continued until the cluster associations do not change. The
pseudocode for the K-Means algorithm can be illustrated very simple and is shown is table 2.1 (For MATLAB
implementation refer to appendix B.2).

1. Initialize the K cluster means to μk, where k = {1, 2, . . . , K}

2. Calculate squared Euclidian distance between each datapoint xn and cluster
means μk as defined in (2.12)

3. Associate each datapoint xn to the cluster with the shortest distance

φk = {xn | argmin
∀n

d(xn, μk)}

4. Re-calculate the cluster means, based on the N ′ associated datapoints xn

μk =
1

N ′
∑

n∈φk

xn

5. Repeat steps 2 - 4 until there are no change in cluster associations.

Table 2.1: Pseudocode for the K-Means algorithm
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2.2 K-Means Clustering

Here φk denotes the subset of datapoints assigned to cluster k, e.g. cluster 1 may have 3 datapoints assigned
as φ1 = {x2,x5,x9}. As each datapoint xn is associated to one and only one cluster given by φk, the K-Means
algorithm is a hard decision type. In contrast the Mixture of Gaussians is a soft decision type, as we shall see later.
The K-Means algorithm only estimates the cluster means μk, so in case of modelling a Gaussian distribution the
corresponding variance σ2

k can be estimated based on the cluster associations by σ2
k = 1

N ′
∑

n∈φk
(xn − μk)2.

Model Parameters

The amount of clusters K in K-Means is an essential model parameter. If K is too low we might obtain an
underfit and suffer from a bias failing to adapt to the underlying structure of the dataset X. If K is too high we
risk achieving an overfit, where each cluster has only one association in the extreme case. Figure 2.1 gives an
illustration of the two cases.

x1

x2 Underfit Overfit

1

2

x1

x2

x1

x2 Failure

1

2

Figure 2.1: left: Case of underfitted clustering. Middle: Case of overfitted clustering. Right: Case of failed clustering.

The choice of K is therefore essential and several techniques exists to find the optimal number such as GAP
statistics, not discussed here. Refer to [9] for description of GAP statistics.

Cluster Initialization

The K clusters can be initialized in different approaches. Initially we can generate K random unity length
vectors with uniform distribution with no relation to the actual dataset X. Visually this would be a noisy image
patch. This however suffers from the risk of achieving unassigned clusters, since they might be initialized far
from the actual dataset and hence be overrun by competing cluster assignments. Any unassigned clusters can
however quickly be identified from any of the initial noise image patches.

A different approach is to incorporate the dataset X in the initialization and choose K random datapoints as
clusters. This has the advantage of being in the vicinity of the dataset from the first iteration and thus decreases
the number of iterations needed.

Finally the initial clusters can be generated from a Gaussian distribution using the mean of the dataset D and
choosing an initial width of the variance.

Limitations

The K-means algorithm being a competitive learning method has some relatively fatal limitations in certain
cases. As it is a hard-decision type, since it only assigns datapoints to one cluster by φk, it does not consider
any 2nd order variance information and can therefore not take any shape or size of a cluster into account. An
example where this becomes a limitation is shown in the right illustration in figure 2.1. Due to the shape of the
two clusters two datapoints from the right cluster has incorrectly been assigned to the left cluster, because of
the shorter distance yielding a bad grouping.

In general datapoints located near the border of two or more clusters should arguably play a partial role for the
surrounding clusters, but since datapoints within a cluster has equal weights independent of their individual
distance, these cases arise [19]. The mixture of Gaussians model using soft assignment instead is by far more
robust to this type of failing cases and will be presented in section 2.4.

A generative model will later be presented based on the K-means algorithm in section 3.3. Next we will describe
clustering from a probabilistic point of view in terms of density estimation.
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2.3 Probabilistic Density Estimation

2.3 Probabilistic Density Estimation

In the previous section we saw how the clustering K-Means algorithm has the ability to cluster data with few
simple iterating steps, due to its hard-assignment of data to the individual clusters. In this section we introduce
the class of probabilistic models for density estimation as an improved alternative using soft-assignment of
datapoints instead. In terms of density estimation this means any observed data X = {xn}Nn=1 is modelled
using a probabilistic modelM with a set of parameters Θ, as the name implies. The Gaussian mixture model
(MoG) and the mixture of factor analyzers (MFA) are examples of such probabilistic model to name a few.

First we will introduce a set of preliminary statistical concepts or tools for estimating model parameters Θ and
then present a set of methods used for density estimation in relation to our cognitive generative model.

2.3.1 Maximum Likelihood Estimation

For a given modelM the objective is to estimate the parameters Θ, such that the model best describe the given
observations X, that is to maximize the probability p(Θ|X). If we apply bayes’ rule, we can rewrite the posterior
p(Θ|X) into

p(Θ|X) =
p(X|Θ)p(Θ)

p(X)
(2.13)

where p(X|Θ) is the likelihood that the model with parameters Θ are responsible for generating X. The
probability p(Θ) is the prior information on the model parameters and p(X) denotes the evidence. Several
approaches exist to determine an optimal set of parameters Θ∗ using different assumptions. In the Maximum
Likelihood (ML) method the unknown parameters Θ are assumed uniform distributed, i.e. no prior information
are available on them. Since the model parameters Θ are not dependent on p(X), maximizing the likelihood is
equivalent to maximizing the posterior p(Θ|X). In the ML method the parameters Θ are chosen such that they
maximize the likelihood function p(X|Θ) expressed by

p(X|Θ) = p(x1,x2, . . . ,xN |Θ) (2.14)

As many density functions are based on exponential terms it is convenient to use the logarithm of the likelihood
or the log-Likelihood L instead. This has no impact on the maximization of the likelihood, since the logarithm
is a monotonic function. If we further assume the observed data samples xn are all independent and identically
distributed (IID) , we can express the log-likelihood L as the sum of the individual log-likelihoods by

L(Θ) = ln p(X|Θ) =
N∑

n=1

ln p(xn|Θ) (2.15)

To maximize the likelihood the 1st order derivative is set to zero, ∂
∂Θ ln p(X|Θ) = 0 and the parameters Θ can

be estimated as

Θ∗ = argmax
Θ

ln p(X|Θ) (2.16)

With this approach the model parameters Θ can be found analytically for simple likelihood functions. However
as the likelihood function can be a complex function, which does not derivate easy, other iterative approaches
can be used. In section 2.3.3 the EM-algorithm is introduced as an iterative approach for maximum likelihood
estimation used widely to fit model parameters in density estimation.

A different challenge in modelling is the choice of the dimension or size of the model parameters, Θ. In the
next subsection the Bayes Information Criteria is shortly presented as a statistical tool for model selection.
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2.3.2 Model Selection and Bayes Information Criteria

Using the maximum likelihood approach to estimate model parameters for a given observed dataset X does
not necessarily guarantee the optimal set of parameters, as the likelihood is also dependent on the dimension
of the model parameters or the free parameters, denoted k. Selecting the right model is therefore essential in
obtaining a representative model.

Choosing a low dimension of the model, we risk failing to capture the underlying structure of the data X
and suffer from a bias. Conversely a high dimension of the model allows greater flexibility for fitting model
parameters resulting in a higher likelihood, but also increases the risk of achieving an overfit to the training
data. This is the basic Bias/Variance trade-off discussed shortly in appendix A.6.

To find an optimal number of independent model parameters k the Bayesian Information Criterion (BIC) can be
used to compare different models [27]. The BIC is derived using Bayes theorem [27] and can be expressed as

BIC = −2Lmax + k ln(N) (2.17)

where Lmax is the log of the max. likelihood of the comparing models and N is the number of observations.
Using the criteria in (2.17) the model with the lowest BIC should be the preferred selection. This shows
how high dimensional models (large k) are penalized and should only be accepted if provide highly likely
descriptions of the data. By changing the sign of the expression, eq. (2.17) can be seen as seeking the highest
likelihood pr. model dimension and observation [27].

Here it is important to note that choosing an optimal model is also context dependent. The optimal size for
a cognitive generative model can not necessarily be evaluated through the BIC. For this type of model, the
optimal dimension may only be evaluated manually, as we shall see later.

2.3.3 Expectation-Maximization Algorithm

The EM-algorithm being a iterative method is not based on gradient descent (1st order) or Newton’s method
(2nd order), which both are common approaches in solving non-linear optimization problems.

In the EM-algorithm the strategy is to make a local approximation, which is a lower-bound on the likelihood
function and progressively improve the bound (i.e. increase the bound) through iterations until the EM has
converged to a maximum. The algorithm then includes two steps, the "E"-step, which computes the bound and
an "M"-step, which maximizes the bound. This will be more evident in the following sections.

Latent Variable Models

Any observed dataset x does not necessarily reveal the actual structure of the model as for instance mixture
models. The data x is hence assumed incomplete (or has missing data) and it therefore becomes convenient to
introduce hidden or latent variables h for the model to better describe the incomplete observed data x. The
latent variables can for instance be discrete component labels representing a sort of imaginary class labels for
the observed data. The log-likelihood for the data as defined in (2.15) is thus redefined as the incomplete
log-likelihood as

Linc(Θ) =
∑

n

ln p(xn|Θ) =
∑

n

ln
∫

p(xn|H,Θ) dH (2.18)

where H = {hn}Nn=1 is the latent random variable invoked. By introducing the latent variables hn, it can be
shown that the incomplete log-likelihood Linc(Θ) is upper-bounded by the function F(ph,Θ) (see appendix
A.2 for derivation and proof) defined as

F(ph,Θ) Δ=
∑

n

∫
ph(hn) ln

p(xn,hn|Θ)
ph(hn)

dhn (2.19)

If we define the complete log-likelihood by Lc(Θ) = ln p(X,H|Θ), we can rewrite (2.19) (see appendix A.2)
into
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F(ph,Θ) = Eh{Lc(Θ)} −
∑

n

H(h) (2.20)

where the first term is the expected value of the complete-data log-likelihood with respect to the latent variables
h and the last term inside the sum is the entropy of h, denoted H(h) (refer to appendix A.3).

The iterative Expectation/Maximization-algorithm (EM) alternates between maximizing F(ph,Θ) wrt. ph and
Θ respectively. Here it is important to note that only the first term in (2.20) is dependent on the model
parameters Θ. This will simplify the computations of the steps in the EM-algorithm, outlined below.

E− step : p
(m+1)
hn

← argmax
phn

F(p(m)
h ,Θ(m)), ∀n (2.21)

M− step : Θ(m+1) ← argmax
Θ
F(p(m+1)

hn
,Θ(m)) (2.22)

⇒ Θ(m+1) ← argmax
Θ
Eh{Lc(Θ(m))} (2.23)

In the "M"-step the expected value of the parameters Θ is maximized with constant latent variables H. In the
"E"-step the expected value of the log-likelihood Lc(Θ) wrt. the latent variables H is estimated while keeping
the parameters Θ constant. The expectation in the "E"-step is exactly maximized when the bound becomes an
equality, i.e. Linc(Θ) = F(ph,Θ). This occurs when the two distributions phn(hn) = p(hn|xn,Θ) and becomes
evident from (2.20).

F(ph,Θ) =
∑

n

∫
ph(hn) ln

p(xn,hn|Θ)
p(hn|xn,Θ)

dhn (2.24)

=
∑

n

∫
ph(hn) ln p(xn|Θ) dhn (2.25)

=
∑

n

ln p(xn|Θ)
∫

ph(hn) dhn (2.26)

=
∑

n

ln p(xn|Θ) (2.27)

= Linc(Θ) (2.28)

This can also be seen from (A.14) in appendix A.2, where the KL divergence becomes zero for ph(hn) =
p(hn|xn,Θ), i.e. KL(ph(hn) || ph(hn)) = 0.

The "E"- and the "M"-steps can together be interpreted as shown in figure 2.2. Here the "E"-step forms the bound
F(ph,Θ), which is tangent to the log-likelihood Linc(Θ) and the "M"-step then subsequently maximizes this
bound as shown on the figure. In addition the steps can also be seen as coordinate ascent in likelihood-space
as illustrated in figure 2.3, where each step can only be made either horizontally or vertically until a maximum
is found. The maximization of the bound in the "E"-step cannot be seen in this figure, since the surface curves
illustrate Lc(Θ) and not the bound F(ph,Θ).

Prior to any "M"-step F(ph,Θ) = Linc(Θ) and since the parameters Θ are assumed constant, we are guaran-
teed not to decrease the likelihood Linc(Θ). This correspond to minimizing the Kullback-Leibler divergence
KL

(
ph(hn) || p(hn|xn,Θ)

)
in (A.14). This has also been shown by Neal & Hinton [23] and Hastie, Tibshirani

& Friedman [9].

Eventhough the EM-algorithm is ensured to maximize the likelihood Lc(Θ), it is susceptible to local maxima
and thus not guaranteed to find the global maximum. In most cases it is actually not desired to converge to a
global maximum, since such a solution is considered an overfit. For the Gaussian mixture model this manifests
into mixture component fitted to single datapoints with variances close to zero. This will become clearer in the
later sections.

Having described a general framework for the EM-algorithm, we now present the Gaussian mixture model and
apply the EM-algorithm to derive a set of iterating steps for this type of model.
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Linc( )

F(pz, )

LL

E-step

M-step

n n+1

Figure 2.2: Conceptual illustration of the EM-
steps. The "E"-step estimates the upper-bound on
the likelihood function F(ph,Θ) and the "M"-step
maximizes that bound.

pz

E-step

M-step

LC( )

Figure 2.3: This figure illustrates the coordinate
ascent of the EM-algorithm, iterating between the
"E"- and the "M"-step.

2.4 Gaussian Mixture Model

The Gaussian mixture model or the Mixture of Gaussians (MoG) is a latent variable model widely used in density
modelling due to its simplicity. If we assume N observed data samples X = {xn}Nn=1, where x is a random
d dimensional variable, the MoG model expresses the probability density p(x) as a linear combination of K
Gaussian mixtures on the general form

p(x) =
K∑

k=1

p(x|k)p(k) =
K∑

k=1

αk · p(x|k) (2.29)

where αk = p(k) is the component prior summing to 1 for all k, i.e.
∑

k αk = 1 and p(x|k) denotes the Gaussian
distribution function given by

p(x|k) =
1√

(2π)d|Σk|
exp

(
− 1

2
(x− μk)T Σ−1

k (x− μk)
)

(2.30)

where the 1st order mean μk and the 2nd order covariance matrix Σk are the parameters for the k’th Gaussian
component. Thus all the MoG model parameters become Θ = {αk, μk,Σk}Kk=1.

In this model we assume the observed each data sample xn is generated from one of the Gaussian component
p(x|k), however the information of which mixture component was actually responsible for the generation is not
directly available. This information must be inferred from the observables and for this purpose we introduce
the K dimensional binary latent variable hn = {hk,n}Kk=1 which expresses which component k is responsible
for generating the n’th sample xn. That is we define hk,n to hold a boolean 1 at the k’th position for the n’th
sample if the k’th component actually generated xn [3] [4], e.g.

hn = {00 . . .010 . . .00}T (2.31)

where p(hk,n = 1) = αk in (2.29) and H = {hn}Nn=1, becomes an K × N matrix. This notation allows the
number of samples associated by component k to be found as Nk =

∑
n hk,n.

As the EM-algorithm assumes the presence of latent or missing variables H it becomes a obvious choice in
estimating the parameters Θ of the MoG model. The complete log-likelihood based on h can now be written as
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Lc(Θ) = ln p(X,H|Θ) (2.32)

= ln
N∏
n

p(xn,hn|Θ) (2.33)

= ln
N∏
n

K∏
k

(
p(xn|hk,n = 1,Θ)p(hk,n = 1)

)hk,n

(2.34)

=
N∑
n

K∑
k

hk,n

(
ln p(xn|hk,n = 1,Θ) + ln αk

)
(2.35)

where hk,n in the exponent in (2.34) serves to only select or activate the mixture component k responsible
for generating xn. The expression in (2.35) form the basis in the derivation of the update equations for the
EM-algorithm, i.e. the "E"- and "M"-steps.

M-step

As mentioned the "M"-step maximizes the expectation of the complete log-likelihood function Eh{Lc(Θ)} under
the assumption that the latent variables hn are known. This expectation Eh{Lc(Θ)} can be expressed based on
(2.35) as

Eh{Lc(Θ)} =
N∑
n

K∑
k

wk,n

(
ln p(xn|hk,n = 1,Θ) + ln αk

)
(2.36)

where wk,n = Eh{hk,n} denotes the responsibility or weight of the k’th mixture component in generating
sample n. From (2.36) we can derive a set of update equation for the model parameters Θ = {αk, μk,Σk}Kk=1

by differentiating Eh{Lc(Θ)} wrt. to the different parameters. Initially we derive the update for the mean μk.

∂Eh{Lc(Θ)}
∂μk

=
N∑
n

wk,n
∂

∂μk
ln p(xn|hk,n = 1,Θ) = 0 (2.37)

where p(xn|hk,n = 1,Θ) is the Gaussian distribution given by (2.30). As this expression only includes depen-
dency to μk in the quadratic form inside the exponential term, the partial derivative becomes

∂

∂μk
ln p(xn|hk,n = 1,Θ) = (xn − μk)T Σk (2.38)

This is substituted into (2.37) and we can isolate the mean μk

N∑
n

wk,n(xn − μk)T Σk = 0 ⇔ (2.39)

μk =
∑N

n wk,nxn∑N
n wk,n

(2.40)

This gives the intuitive results that the mean μk is estimated as an average of weighted datapoints xn. Similarly
the covariance matrix Σk can be found by differentiating (2.36) wrt. Σk and by the same manipulations we
get

Σk =
∑N

n wk,n(xn − μk)(xn − μk)T∑N
n wk,n

(2.41)

This also shows that the covariance Σk is estimated over weighted zero-mean datapoints. To estimate the prior
αk we need to include a few constraints. As αk is a probability it must be between 0 and 1 and must sum to 1
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2.4 Gaussian Mixture Model

for all k, i.e.
∑

k αk = 1. These constraints are obeyed by augmenting (2.36) with a Lagrange multiplier (refer
to [20] and [4] for a description of constrained optimization), such that

C(Θ) = Eh{Lc(Θ)} − λ
( K∑

k

αk − 1
)

(2.42)

Setting the 1st derivative wrt. αk to zero, we get

∂

∂αk
C(Θ) =

∂

∂αk

[
Eh{Lc(Θ)} − λ

( K∑
k

αk − 1
)]

(2.43)

=
∂

∂αk

[
N∑
n

K∑
k

wk,n

(
ln p(xn|hk,n = 1,Θ) + lnαk

)− λ
( K∑

k

αk − 1
)]

(2.44)

=
N∑

n=1

1
αk

wk,n − λ = 0 (2.45)

Summing over all values of k and using
∑

k αk = 1 and
∑

k wk,n = 1, we obtain λ = N . From this we can
isolate αk

αk =
1
N

N∑
n=1

wk,n (2.46)

This intuitive result shows that the prior information for each component is based on how large the responsi-
bility is for each component.

E-step

In the "E"-step the latent variables h are estimated under the assumption that the model parameters Θ are
constant or known. Previously the "E"-step was shown in (2.24) - (2.28) to be maximized when ph(hn) =
p(hn|xn,Θ). Hence the expectation of the latent variables wk,n should be taken wrt. the conditional probability
p(hn|xn,Θ). We therefore compute the weights wk,n by averaging over all possible outcomes.

wk,n = E{hk,n} =
∫

hk,n p(hk,n|xn,Θ) dhk,n (2.47)

= 1 · p(hk,n = 1|xn,Θ) + 0 · p(hk,n = 0|xn,Θ) (2.48)

= p(hk,n = 1|xn,Θ) (2.49)

From bayes’ rule we can rewrite (2.49) into

wk,n =
p(xn|hk,n = 1,Θ) · αk∑K
k′ p(xn|hk′,n = 1,Θ) · αk′

(2.50)

This final expression gives the intuitive appealing result that the responsibility for each sample xn is based on
the gradual influence from each weighted Gaussian mixture component.

As discussed earlier the EM-algorithm is susceptible to any maximum, local or global. In the special case
of converging to a global maximum, the MoG model overfits to the data, where each Gaussian component
represents a single datapoint with variance close to zero. This is not a desired case as the MoG model has failed
to capture the underlying structure of the dataset. Controlling the convergence of the likelihood is therefore
evident and for the MoG model a few restriction can be made on the complexity of the model to prevent
potential overfit. These will be presented in the following section.
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2.4 Gaussian Mixture Model

2.4.1 Model Complexity

The Gaussian kernel function p(x|k) defined in (2.30) can as mentioned be described completely by the 1st
order mean μk and 2nd order variance Σk. Despite only having two parameter the complexity of the kernel
function can be controlled by restricting the flexibility of the variance or limiting the number of free parameters.
In our analysis we will focus on 3 different variances denoted isotropical, diagonal and full illustrated in figure
2.4.

x2

x1

x2

x1

x2

x

Isotropical variance Diagonal variance Full variance

Figure 2.4: The 3 different restrictions of variance.

Isotropical variance

The isotropical Gaussian function has a variance defined as Σ(iso)
k = σ2

kI, where σ2
k is a scalar, i.e. a constant

diagonal variance σ2
k and can be estimated for each component by

σ2
k =

1
d

d∑
i=1

∑N
n=1 wk,n(xi,n − μi,k)2∑N

n=1 wk,n

(2.51)

Thus any covariance information is not included as the off-diagonal element of Σ(iso)
k are forced to zero. Visually

this forms a circular shape shown in the left figure in 2.4. This also limits the number of parameters to estimate
to K.

Given a dataset X it can be seen from the definition how this isotropical variance can limit the model from
overfitting to X, i.e. avoid adapting to specific datapoints. In contrast this type of variance can also induce a
bias to the model. This is the basic bias/variance trade-off.

Diagonal variance

From the isotropical model, the variance can be expanded to diagonal variance allowing greater flexibility.
A diagonal covariance matrix is defined only by its diagonal elements, i.e. Σ(diag)

k = σ2
kI, where σ2

k is a d
dimensional vector and is estimated by

σ2
k =

∑N
n=1 wk,n(xn − μk)2∑N

n=1 wk,n

(2.52)

This type also assumes no correlation between the individual dimensions of x and thus does not take any
covariance into account. This gives a elliptic shape shown in the middle illustration in figure 2.4. In addition
the number of parameters to estimate is limited to Kd.

Full variance

Finally the full variance Σ(full)
k has full flexibility and is defined for the 2 dimensional case in (A.3) in appendix

A.1. It is clear that the full variance includes covariance information and thereby has full flexibility. In contrast
to the isotropical variance, the full variance risk adapting too precisely to individual datapoints and thereby
suffer from overfit. This is again the other side of the bias/variance trade-off.
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2.5 Mixture of Factor Analyzers

The full information of the covariance included in Σ(full)
k can be seen as a slight skew of the ellipse on the right

illustration in figure 2.4. For the full covariance, the number of parameters to estimate is diagonal plus half the
off-diagonal elements, expressed as K(1

2 (d2 − d) + d) = Kd(1
2 (d− 1) + 1).

Summary

The "EM"-algorithm presented for the MoG model is implemented in MATLAB with all 3 types of covariance ma-
trices and can be found in appendix B.2. In sections 3.4 & 3.5 we present a small set of illustrative simulations
of the MoG model to view the performance in action.

In our analysis of the MoG model, we have assumed that the amount of samples N is much larger than the
dimension of the data d, i.e. N >> d. In cases where this is not true, the N datapoints span only a low-
dimensional subspace of Rd. This leads to a poor estimation of the Gaussian mixture parameter μk and Σk, in
particular the covariance Σk, which risk being singular. This is the curse of dimensionality.

In order to avoid poorly estimated covariance matrices and a potential overfit of the MoG model, the covariance
matrix Σx can be restricted in 2 different ways, isotropical or diagonal variance, as discussed. However these
restriction assume no covariance in the datapoints, which may limit the MoG modelling capabilities.

We therefore introduce a different mixture model, which includes a dimension reduction of the data in the
modelling.

2.5 Mixture of Factor Analyzers

In unsupervised learning two of the major disciplines are clustering and dimension reduction. In appendix A.1
we discuss and present Principal Component Analysis as a tool for reducing dimensions of data. In this section
we will present the Mixture of Factor Analyzers (MFA) combining both clustering and dimension reduction as
an alternative to MoG with improved modelling properties of covariance information.

Instead of using the Gaussian distribution (2.30) as the kernel function in our mixture model, we employ a
factor analyzer (FA), which both performs dimension reduction and Gaussian modelling with potentially fewer
parameters. Initially these two steps could be conducted separately using PCA and MoG, but by combining
them some of the drawbacks of PCA in terms of probabilistic modelling can be avoided. Unlike FA PCA does
not define a proper density model for the data, as the cost of transforming a point is equal anywhere along the
principal component subspace [7].

In addition different features may be correlated within different clusters, which means the metric for the di-
mension reduction may need to be different for different clusters. By including dimension reduction the process
of cluster formation may become easier, since different clusters may appear more separated depending on the
local metric [7].

Thus in combining clustering and dimension reduction we may achieve a synergetic effect and an improved
model compared to MoG. Before we present the MFA, we proceed with describing Factor Analysis in general
form and derive a set of update equations based on the "EM"-algorithm.

2.5.1 Factor Analysis

In factor analysis the d dimensional random variable x is assumed Gaussian distributed and is linearly decom-
posed into lower d′ dimensional factors z, where d usually is much smaller than d′. The generative factor
analyzer (FA) model is given by

x = Λz + ε (2.53)

where Λ is the d × d′ factor loading matrix. The corresponding d′ dimensional factors z are assumed to have
zero mean with unity variance, i.e. N (0, I). Finally ε is a d dimensional random variable holding the residual
uncorrelated noise and is hence assumed to have zero mean and a diagonal variance denoted by Ψ, i.e. N (0, Ψ).
The diagonal variance for both z and ε is a vital assumption in factor analysis and leads to all correlation in the
data x are modelled by factor loading matrix Λ and the factors z and that the residual independent noise are
accounted for by ε. This also make FA more robust to independent noise in dimension reduction compared to
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2.5 Mixture of Factor Analyzers

PCA. In FA the k factor-loading vectors in Λ plays the same role as the principal components for PCA, as they
are the informative projections of the data [7].

Regular PCA as presented in section A.1 can also be derived as Probabilistic PCA (PPCA) on the same form as
eq. (2.53) [29]. In PPCA the distribution of the independent noise ε is instead defined with isotropical variance,
i.e. N (0, σ2I), which accounts for the averaged variance ’lost’ in the projection of data into subspace. Refer to
[29] for a more detailed description of PPCA.

From the decomposition of x in (2.53) the covariance of x can easily be expressed as

Σx = E{xxT } = E{(Λz + ε)(Λz + ε)T } = E{ΛzzT ΛT }+ E{εεT } = ΛIΛT + Ψ = ΛΛT + Ψ (2.54)

Thus the distribution of the data can be written as p(x|Θ) = N (0,ΛΛT + Ψ), where Θ = {Λ,Ψ} are the
model parameters 4. We can now express the log-likelihood of the parameters Lx(Θ) based on (2.15) as
Lx(Θ) =

∑N
n=1 ln N (0,ΛΛT +Ψ). Estimating the model parameters from this log-likelihood is a hard problem

to do in closed form, if even possible.

Instead we base the derivation on the "EM"-algorithm as presented in section 2.3.3. If we denote the factors
Z = {zn}Nn=1 the latent variables, we can form the "M"-step from the complete log-likelihood of the model
parameters from equation 2.23 given the observed dataset X = {xn}Nn=1, rewritten here for convenience

Ez{Lc(Θ)} = Ez{ln p(X,Z|Θ)} = Ez{ln p(X|Z,Θ) + ln p(Z)} (2.55)

where p(X|Z,Θ) is the conditional Gaussian distribution of the data based on (2.53) with mean μx|z = Λz and
variance Σx|z = Ψ, i.e. p(X|Z,Θ) = N (Λz,Ψ). From (2.55) we can neglect the last term ln p(Z), since it does
not depend on the model parameters and thus we need to maximize

Ez{ln p(X|Z,Θ)} =
N∑

n=1

Ez{ln p(xn|zn,Θ)} (2.56)

=
N∑

n=1

Ez
{

ln
1√

(2π)d |Ψ| exp
(− 1

2
(xn −Λzn)T Ψ−1(xn −Λzn)

)}
(2.57)

= −Nd

2
ln(2π)− N

2
ln |Ψ| −

N∑
n=1

Ez
{1

2
(xn −Λzn)T Ψ−1(xn −Λzn)

}
(2.58)

= c− N

2
ln |Ψ| −

N∑
n=1

Ez
{1

2
xT

nΨ−1xn − xT
nΨ−1Λz +

1
2
zT ΛT Ψ−1Λz

}
(2.59)

where c is a constant independent of the model parameters. As the last term inside the expectation is a scalar,
1
2z

T ΛT Ψ−1Λz = C, where C ∈ R, we can use the facts that tr(C) = C and tr(AB) = tr(BA) and rewrite
(2.59) into

Ez{ln p(X|Z,Θ)} = c− N

2
ln |Ψ| −

N∑
n=1

(1
2
xT

nΨ−1xn − xT
nΨ−1ΛEz{z|xn}+

1
2
tr
(
ΛT Ψ−1ΛEz{zzT |xn}

))
(2.60)

Δ= Q(Λ,Ψ) (2.61)

This expression is used for deriving the "M"-step for the update algorithm, shown below.

"M"-step :

If we denote the entire last expression Q(Λ,Ψ) in (2.60), we can derive the model parameters by setting the
respective derivatives to zero. Initially we derive the update equation for the factor loading matrix Λ.

4For PPCA, p(x|Θ) = N (0, ΛΛT + σ2I), where Θ = {Λ, σ2}
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2.5 Mixture of Factor Analyzers

∂Q(Λ,Ψ)
∂Λ(m)

= −
N∑

n=1

Ψ−1xnEz{z|xn}T +
N∑

n=1

Ψ−1Λ(m+1)Ez{zzT |xn} = 0 (2.62)

By setting this to zero, we can isolate for Λ(m+1) and derive the update equation

Λ(m+1) =
( N∑

n=1

xnEz{z|xn}T
)( N∑

n=1

Ez{zzT |xn}
)−1

(2.63)

This show the intuitive result that the factor loading matrix Λ is based on 2nd order information of the factors
z. To find an update equation for Ψ, we derive it through its inverse, Ψ−1. From (2.60) we get

∂Q(Λ,Ψ)
∂Ψ−1(m)

=
N

2
Ψ(m+1) −

N∑
n=1

(
1
2
xnxT

n −Λ(m+1)Ez{z|xn}xT
n +

1
2
Λ(m+1)Ez{zzT |xn}ΛT(m+1)

)
= 0 (2.64)

By substituting Λ(m+1) with eq. (2.63) we get

N

2
Ψ(m+1) =

N∑
n=1

(
1
2
xnxT

n −Λ(m+1)Ez{z|xn}xT
n +

1
2
Λ(m+1)xnEz{zT |xn}T

)
(2.65)

=
N∑

n=1

(
1
2
xnxT

n −
1
2
Λ(m+1)Ez{z|xn}xT

n

)
(2.66)

As Ψ must not contain any covariance information, we enforce a diagonal constraint and get

Ψ(m+1) =
1
N

diag

{
N∑

n=1

xnxT
n −Λ(m+1)Ez{z|xn}xT

n

}
(2.67)

In both update equations (2.63) and (2.67) there is a dependency to the latent variables E{z|xn} and E{zzT |xn}
as they are assumed known or constant. In the "E"-step these latent variable expectations are estimated assum-
ing the model parameters Θ are constant.

"E"-step :

In the "E"-step the expectation of latent variables z are estimated based on p(zn|xn,Θ) for maximization, as
proved in section 2.3.3. The 1st and 2nd order expectations of the latent variables z used in (2.63) and (2.67)
are exactly the expected mean and covariance of p(zn|xn,Θ). To estimate these conditional expectations, we
express the combined joint distribution of the data and the factors as

p

([
x
z

])
= N

([
0
0

]
,

[
ΛΛT + Ψ Λ

ΛT I
])

(2.68)

For a multivariate Gaussian distribution is can be shown [24] that

Ez{z|x} = μz|x = μz + ΣzxΣ−1
x (x− μx) (2.69)

Ez{zzT |x} = Σz|x = Σz −ΣzxΣ−1
x Σxz (2.70)

This means we can express expected value of the factors z by

Ez{z|x} = ΛT (Ψ + ΛΛT )−1x (2.71)

= βx (2.72)
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where β is defined as β = ΛT (Ψ + ΛΛT )−1. As Ψ is diagonal we can use the Woodbury matrix identity [24]
to invert (Ψ + ΛΛT )−1 efficiently by

(Ψ + ΛΛT )−1 = Ψ−1 −Ψ−1Λ(I + ΛT Ψ−1Λ)−1ΛT Ψ−1 (2.73)

where I is the d′ × d′ identity matrix. The second moment of the factors can be found by

Ez{zzT |x} = var(z|x) + Ez{z|x}Ez{z|x} (2.74)

= I + ΛT (Ψ + ΛΛT )−1Λ + (βx)(βx)T (2.75)

= I − βΛ + βxxT βT (2.76)

This gives a measure of uncertainty of the factors z, a quantity with no analogue in PCA. Having introduced the
linear Factor Analyzer model we expand it to a mixture model using FA.

2.5.2 Mixture of Factor Analyzers

Using the FA as the kernel function we can model an observed dataset X = {xn}Nn=1 by a mixture of K Factor
Analyzers. The mixture model can be expressed based on the general form given in (2.29) (omitting samples
indices) as

p(x) =
K∑

k=1

αk ·
∫

p(x|z, k)p(z|k) dz (2.77)

where αk = p(k) is the component prior summing to 1, i.e.
∑

k αk = 1 and the factors z are assumed to be
N (0, I) distributed as in regular factor analysis, i.e. p(z|k) = p(z) = N (0, I). Comparing with the general
form in (2.29) p(x|k) can in this case be found by marginalizing over all latent variables z, i.e. p(x|k) =∫

p(x|z, k)p(z, k) dz. In factor analysis the mean of the observed data x was assumed zero, but for the mixture
model we assign a d dimensional mean vector to each FA denoted μk. The conditional distribution of x can
then be written as

p(x|z, k) = N (μk + Λkz,Ψ) (2.78)

For the MFA the model parameters to estimate therefore become Θ =
{{αk, μk,Λk}Kk=1,Ψ

}
. If we re-introduce

the binary variable hn = {hk,n}Kk=1 as a mixture indicator similar for the MoG model in (2.31) and identify
the factors z and the mixture weight h as the latent variables for this model we can expand or modify the
"EM"-algorithm from FA to estimate the model parameters. From the conditional distribution (2.78) and (2.56)
we can redefine the expected log-likelihood Q(Θ) from (2.61) to

Q(Θ) = E
{

ln
∏
k

∏
n

[
1√

(2π)d|Ψ| exp
(
− 1

2
(xn − μk −Λkz)T Ψ−1(xn − μk −Λkz)

)]hk,n
}

(2.79)

where hk,n serves to only activate the mixture component responsible for generating xn, as seen before. To
jointly estimate the mean μk and the factor loading matrix Λk, we define an augmented column vector of
factors and factor loading matrices

Λ̃k =
[
Λk μk

] ∧ z̃ =
[

z
1

]
(2.80)

The expected log-likelihood in (2.79) can then be rewritten as
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Q(Θ) = E
{

ln
∏
k

∏
n

[
1√

(2π)d|Ψ| exp
(
− 1

2
(xn − Λ̃nz̃)T Ψ−1(xn − Λ̃nz̃)

)]hk,n
}

(2.81)

= c− N

2
ln |Ψ| −

∑
k,n

1
2
wk,nxT

nΨ−1xn − wk,nxT
nΨ−1Λ̃nEz{z̃|xn, k}

+
1
2
wk,ntr

(
Λ̃T

k Ψ−1Λ̃kEz{z̃z̃T |xn, k}) (2.82)

where c is a constant independent of the model parameters and expectation of the mixture indicators wk,n =
E{hk,n} are proportional to the joint distribution of xn and hk,n, i.e. using Bayes

wk,n = E{hk,n} ∝ p(xn, hk,n) = p(xn|hk,n)p(hk,n) (2.83)

= αk N{xn − μk,ΛkΛT
k + Ψ} (2.84)

The expression in (2.82) is used for deriving the model parameters in the "M"-step, shown next

"M"-step :

The model parameters Θ =
{{αk, μk,Λk}Kk=1,Ψ

}
are estimated by setting the derivative of Q(Θ) to zero for

the respective parameters. Initially we derive the update equation for Λ̃k by

∂Q(Θ)

∂Λ̃(m)
k

= −
N∑

n=1

wk,nΨ−1xnEz{z̃|xn, k}T − wk,nΨ−1Λ̃(m+1)
k Ez{z̃z̃T |xn, k} = 0 (2.85)

If we isolate for Λ̃(m+1)
k , we get the update equation for the factor loading matrices

Λ̃(m+1)
k =

[
Λ(m+1)

k μ
(m+1)
k

]
=

( N∑
n=1

wk,nxnEz{z̃|xn}T
)( N∑

n=1

wk,nEz{z̃z̃T |xn}
)−1

(2.86)

where the augmented expectations of the factors z̃ are

Ez{z̃|xn} =
[ Ez{z|xn}

1

]
∧ Ez{z̃z̃T |xn} =

[ Ez{zzT |xn} Ez{z|xn}
Ez{z|xn} 1

]
(2.87)

The update equation for Ψ we derive through its inverse Ψ−1 as we did for regular FA earlier. The derivate
from (2.82) becomes

∂Q(Θ)
∂Ψ−1(m)

=
N

2
Ψ(m+1)−

∑
k,n

(
1
2
wk,nxnxT

n−wk,nΛ̃(m+1)
k Ez{z̃|xn, k}xT

n+
1
2
wk,nΛ̃(m+1)

k Ez{z̃z̃T |xn, k}Λ̃T(m+1)

k

)
= 0

(2.88)

By substituting Λ̃(m+1)
k with (2.86), we conduct the same manipulation as in (2.65) - (2.66) and by forcing the

diagonal constraint on Ψ we obtain

Ψ(m+1) =
1
N

diag

{∑
n,k

wk,n

(
xnΛ̃(m+1)

k Ez{z̃|xn, k}
)

xT
n

}
(2.89)

The component priors αk can be computed using the same derivation as for eq. (2.46), hence

αk =
1
N

N∑
n=1

wk,n (2.90)
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All the update equations for the MFA model in (2.86), (2.89) and (2.90) can easily be compared to the equiv-
alent expression derived for the MoG model earlier with the additional weighting factor wk,n. This is the same
intuitive result as we derived for the MoG model in section 2.4.

"E"-step :

In the "E"-step we need to estimate the expectation of all the latent variables z and h and their interactions
found in (2.86), (2.89) and (2.90) under the assumption that the model parameters Θ are constant. With
reference to the definition of Ez{z|x} in (2.72) and Ez{zzT |x} in (2.76), we can express the 1st and 2nd order
conditional expectation of z as

Ez{z|x, k} = βk(xn − μk) ∧ Ez{zzT |x, k} = − βkΛk + βk(xn − μk)(xn − μk)T βT
k (2.91)

The expectation of the latent mixture indicator wk,n was derived earlier in eq. (2.50), where we use p(xn|k) =
N{xn − μk,ΛkΛT

k + Ψ} for the MFA model.

The "EM"-algorithm presented for the MFA model is available as a toolbox in MATLAB 5 and can be found on the
associated DVD.

Having presented the MFA model is can easily be seen that the covariance information is modelled with more
parameters than the MoG model. This leads to a threshold of number of parameters above which MFA does not
contribute further to the modelling of covariance as then the effective number of parameters is less than those
apparent from eq. (2.53). In other words the MFA cannot model the covariance better with more parameters
up to this threshold.

2.6 Density Estimation of Cognitive Data

Up this point we have presented and discussed density estimating algorithms and shown techniques to control
model complexity. In this section we will shortly discuss the influence and limitations using density estimation
in the context of cognitive data.

As discussed earlier we can divide the dataspace of the sources into a valid and an invalid part to help identify
the multidimensional space to model. The objective of our mixture model is thus to be able to best model or
capture the generalized boundaries between these two spaces such that new valid samples can be extracted.
Figure 2.5 shows the valid/invalid split-up for three different modelling cases.

s1

s2

s1

s2

s1

s2

Figure 2.5: Illustration of invalid dataspace (blue dashed area) with 3 cases of modelling.

The left illustration in figure 2.5 shows a mixture model, which suffers from a bias (underfit) and thus also
models invalid dataspace. Increasing the model complexity gives a better fit and limits the generation of invalid
data, as shown in the middle illustration. If the complexity is further increased as shown in right illustration,
the model tends to overfit and adapt to specific datapoints. This of course does not yield invalid data, but limits
the flexibility of the model in generalizing to new samples. Thus the choice of model complexity becomes a
tradeoff between the share of invalid data modelled and model overfitting.

5Available from the website of Prof. Zoubin Ghahramani at http://learning.eng.cam.ac.uk/zoubin/software.html
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3.1 The MNIST Dataset

3. MIXTURE MODEL SIMULATIONS

In section 2 we introduced the class of mixture models based on the linear model x = As as the generative
model, where x is the observed data. For the actual decomposition of x we aim to extract features A = {ar}dr=1,
which are similar to cognitive components. Based on these cognitive features, we present different generative
models formed from cluster analysis, mixture of Gaussians and mixture of factor analyzers and evaluate their
performance in terms generation of new data. The MATLAB code used for the simulations can be found in
appendix B.2 and on the DVD.

For the simulations we use a subset of the MNIST dataset, which will be described next in the first subsection
prior to the description of the models.

3.1 The MNIST Dataset

The dataset we use in our simulations is the MNIST (Modified National Institute of Standards and Technology)
database of handwritten digits from 0 to 96. Originally the US Post Office wanted to automate the process of
sorting letters based on their zip-codes. This lead to the digitization of app. 70000 handwritten zipcode digits
from American letters and eventually forming the MNIST database.

Figure 3.1: Original MNIST dataset all digit classes (only 20 samples shown).

In the MNIST dataset each digit sample is represented as a 28×28 pixel B/W image forming a M = 28×28 = 784
dimensional vector. Figure 3.1 shows 20 examples from each digit class 0 to 9.

This leads to a vector-space representation of a total of 70000 column vectors xn in a large data matrix X =
{xn}Nn=1, where N = 70000 and thus X becomes a 784 × 70000 data matrix for all digits. For each digit class
the data can further be divided into a large training set and a smaller testset given in table 3.1 below.

Digit 0 1 2 3 4 5 6 7 8 9 Total
Trainingset 5923 6742 5958 6131 5842 5241 5918 6265 5851 5949 60000
Testset 980 1135 1032 1010 982 892 958 1028 974 1009 10000

Table 3.1: Subgroups of the MNIST dataset.

In our simulations it is important to have a dataset, which represents as many properties from the MNIST
dataset as possible. We therefore choose to use digit 2 due to its good structural properties, as it includes
both straight lines and curves. This means in evaluating the performance of any algorithm our dataset X will
comprise only of the corresponding training set for the 2 digit, i.e. the dataset reduces to X = 784 × 5958
matrix.

6The MNIST database is available for download from http://yann.lecun.com/exdb/mnist/.
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3.2 Extracting Features

Pre-processing

All digits in the MNIST dataset are originally represented with integer pixel values between [0 : 255]. As a
pre-processing step all components in the vectors (pixels in the digits) x = {x1, x2, . . . xM} are normalized to
unity dynamic range, i.e. xi,n ← 1

255xi,n. This means each pre-processed data sample has an average energy of
appr. Eavg = 89.

Post-processing and Visualization

Throughout our analysis the generated or produced data X can have various formats in term of dynamic range
and dimensionality. This requires some post-processing in order to align the formats for data viewing. When
displaying any 784 dimensional digit vector x the individual image patches are scaled to [0 : 1] to maximize
contrast and inverted to give a white background. Refer to appendix B.1 for the MATLAB code.

Some of the models employed include negative values in their dynamic range, e.g. the MoG model, as we
shall see later. Since image data is strictly non-negative any negative generated values are therefore considered
illegal and are truncated. It is important to note that this processing only applies when viewing data and it not
part of the analysis itself.

Visual Evaluation

In generating new digits from any of our models it becomes hard to define a quantity, which express the quality
of a generated digit, i.e. does a generated digit resemble anything handwritten, including the BIC introduced
in section 2.3.2. This means we can only evaluate the quality of any generated digit visually.

Without such a quality measure it also becomes hard find optimal parameters for the respective generative
model in use. This will also have to be evaluated visually and by trial’n’error. In the following sections the
result from the individual models will be presented and evaluated visually without any measurable quality
measure.

3.2 Extracting Features

For extracting linear features from the observed data x numerous methods with different constraints exist, such
as PPCA [29], ICA [16] or NMF. In the context with image data holding only non-negative pixels it seems
reasonable to apply Non-Negative Matrix Factorization (NMF) for a non-negative parts-based cognitive feature
extraction of x.
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Figure 3.2: Convergence of NMF cost-function for
digit 2 for d = 10.

Figure 3.3: Separate NMF features for all digit
classes, i.e. column vectors of A, for d = 10.

As part of extracting features with NMF, the number of features d must be specified as a model parameter (refer
to section 2.1). This means if d is too small we might achieve features, which are similar to the original observed
sample and thus fail to capture underlying components. In contrast if d is too high, we risk decomposing
into parts which are close to pixel-level structures. In order to find an optimal number of features, the NMF
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3.2 Extracting Features

algorithm implemented as SNMF2D 7 (refer to the DVD for MATLAB code) is applied with different values of
d = {10, 20, 30, 40, 50, 100, 200}. Figure 3.2 shows the successful convergence of the energy-based cost-function
defined in (2.3) during the NMF decomposition of all digits separately for d = 10.

To illustrate the effect of different amount of features, figure 3.3 depicts the non-negative features for all digits
separately for d = 10. These features clearly resemble their respective original digit and suggests that the
number of features d = 10 is too low, as mentioned earlier. In addition each row in figure 3.3 shows a subset
of the features extracted for different values of d = {20, 30, 40, 50, 100, 200}. The figure clearly shows how the
features becomes more sparse as d increases. Judging from a visual subjective point, the size of d = 30 (2nd
row) represents a feature set, which resemble cognitive components. Thus choosing d = 30 for our initial
simulations therefore seems justified.

Figure 3.4: Extracted NMF features for the 2 digit, where each row from the top represents different values d =
{20, 30, 40, 50, 100, 200} respectively.

In addition the decomposition of x introduces the error ELS (2.3), which is inverse proportional to d and can
be seen on figure 3.6. To illustrate the effect each row in figure 3.5 shows random reconstructed digits for all
classes for different values of d respectively.

Figure 3.5: Random reconstructed digits, where
each row represents d = {10, 20, 30, 40, 50, 100}
respectively.
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Figure 3.6: Reconstruction error for d =
{10, 20, 30, 40, 50, 100}.

This figure illustrates how digits for low values of d are reconstructed fairly good, where all digits can be
identified clearly. Increasing d only adds visual features with low dynamic range or variance. The small visible
error for the lowest values of d is as mentioned not enough to misclassify any digits. In particular digits 2 and 3
suffer from the largest error-level (still sufficiently small though). This again suggests that the 2 digit is among
the hardest to generate sufficiently and thus choosing the 2 digit for our analysis seems reasonable.

In the following sections we present different clustering algorithms using the linear NMF feature codebook A
and encoding vectors s to build a linear generative model.

7Available at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/4521/zip/imm4521.zip.
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3.3 Codebook Clustering by K-Means

3.3 Codebook Clustering by K-Means

In this section we introduce a generative model, where the modelling of the sources s is not in focus, but where
a digit x is generated solely by selecting elements from the codebook A = {ar}dr=1. This is can of course be
seen as a different way of generating a valid source s, but in this approach no information from the distribution
of the sources is used. The basic concept is to exclude similar elements from being used in the generation of a
digit x to avoid overlap and thereby only select different segments. If we assume the codebook elements ar can
be grouped into K categories denoted φk, such that A = {φk}Kk=1, the generation of a digit x can be expressed
as

x =
K∑

k=1

ak (3.1)

where we only select K segments from the entire codebook A. To group similar codebook elements ar the
K-Means algorithm described in section 2.2 is applied. Afterwards each of the elements ar are associated as a
member of one of the groups φk, e.g. φ2 = {a3, a6, a10}. A digit x is then generated by extracting exactly one
member ak from each group φk with similar elements with equal probability and adding these contributions as
defined in (3.1). The pseudocode for the algorithm is listed in table 3.2 (MATLAB implementation is given in
appendix B.2 )

1. Group the codebook elements ar , where r = 1, 2, . . . , d into K clusters denoted
φk, where k = 1, 2, . . . , K using K-Means, refer to section 2.2.

2. For all clusters φk extract a single segment ak with equal probability, i.e.
pk(ak) = 1

lk
, where lk is the number of members in cluster φk.

3. Generate a digit x by adding all K extracted segments ak as defined in (3.1).

4. Repeat steps 2 - 3 to generate additional digits X = {x1,x2, . . .}

Table 3.2: Pseudocode for the K-Means algorithm

Each codebook element ar is used discretely in the generation of a digit with no linear weighting. This sets one
of the greatest limitation of this approach, that it can only generate a limited amount of digits, max.

∏K
k=1 |φk|

restricted by the size of the codebook d and the amount of clusters K.

In addition the number of clusters K in this model is a sensitive parameter. The amount should represent the
number of cognitive components for the particular digit, so that each cluster contains all overlapping similar
segments. This is obviously the big challenge for the K-Means algorithm in this context. If K is too high we
risk splitting up the cognitive components into several clusters and thereby achieve a potential overlap in the
generation of digits. In contrast if K is too low we risk having non-similar segments in the same cluster and get
potential holes or incoherency in the generated digits. The performance of the generation of digit can therefore
be loosely predicted by analyzing the resulting clustering of the codebook elements.

With the algorithm described a set of simulations is conducted to evaluate its generative performance.

Results:

In the initial simulation, we select a small codebook A for the digit 2 with d = 30 elements shown in figure
3.7. Choosing d = 30 ensures a codebook where the individual segments can be considered similar to cognitive
components.

For the 2 digits used in these simulations, we cluster the codebook A into K = 5 components using the K-Means
algorithm with random datapoints as initial clusters, μinit. Figure 3.8 shows a scatterplot (1st and 2nd principal
component, refer to appendix A.1) of the codebook datapoints with the initial cluster centers μinit and final
means μk.
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3.3 Codebook Clustering by K-Means

Figure 3.7: NMF features for d = 30.
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Figure 3.8: Scatterplot of codebook data (green dots) with initial cluster centers (blue dots) and final means (red
dots), all projected onto the 1st and 2nd principal axis for K = 5.

The figure clearly shows how the decorrelated datapoints (green dots) are spread widely with no immediate
group structure. In addition it is evident to see that all cluster centers μk were updated during the iterations.
The final means (red dots) are illustrated as real image patches in figure 3.9.

Due to the relatively low amount of clusters K, figure 3.9 reveals how the cluster centers resemble half-complete
2 digits instead of cognitive segments. This means we risk achieving imperfect grouping of the codebook
elements in A and hence get a mixture of unrelated elements in the same group φk, since unrelated segments
might be associated with the same cluster. The resulting cluster associations φk are illustrated in figure 3.10.

Figure 3.9: Cluster centers
for K = 5

Figure 3.10: Sorted NMF features for d = 30 and K = 5
clusters.

This figure clearly shows how the K-Means algorithm has clustered similar segments fairly good. Still some
groups contains few non-similar elements, which does not represent the same segment of the 2 digit, particu-
larly the last group φ5. This can lead to either overlapping segments or incoherency (holes in the structure) of
any generated digits as mentioned.

A set of digits was generated by repeating the algorithm defined in table 3.2 with different random initial
clusters. Each row in figure 3.11 shows a set of 20 random generated digits from each run, where the last row
is generated from the clustering shown in figures 3.9 and 3.10.

This reveals poorly generated 2 digits suffering from exactly overlapping and incoherent segments independent
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3.3 Codebook Clustering by K-Means

Figure 3.11: Random generated 2 digits for d = 30 features and K = 5 clusters, where each row has a different set
of random initial clusters.

of the initial clusters. It is still clear to identify the 2 digits, but they do certainly not represent any handwritten
2 digit. This is due to the poor clustering of the K-Means algorithm resulting in the sorted codebook in figure
3.10, where the groups contain non-similar segments, as mentioned.

To improve the clustering the number of clusters is increased to K = 8 for the same codebook size d = 30
and thereby allow greater freedom to group the codebook elements ar. Figure 3.12 illustrates the same type of
scatterplot as before.
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Figure 3.12: Scatterplot of codebook data (green dots) with initial cluster centers (blue dots) and final means (red
dots), all projected onto the 1st and 2nd principal axis for K = 8.

From the figure a single cluster can be identified, which has failed to receive an update. This could suggest that
there is a cluster with only one member associated, i.e. |φk| = 1. This will be more evident later. Figure 3.13
shows the corresponding image patches for the cluster means μk.

Figure 3.13: Cluster centers
for K = 8

Figure 3.14: Sorted NMF features for d = 30 and K = 8
clusters.

The figure also clearly reveals the cluster means, which resemble half-complete 2 digits. This again indicates a
risk of imperfect grouping as before as before for K = 5. Based on the cluster associations the grouping of the
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3.3 Codebook Clustering by K-Means

codebook elements ar is illustrated in figure 3.14.

Initially the grouping of the codebook elements seems successful, but also reveals two clusters 3 and 6, which
only has a single member associated, i.e. |φ3| = 1 and |φ6| = 1. This is very dependent on the initialization of
the cluster centers μinit and can be seen as an indication of too many clusters. As a direct consequence these
two segments will always be used on the generation of all digits, which is both a limitation in the flexibility of
the model and a risk for overlapping segments.

Using K = 8 clusters a set of simulations were again conducted with different initial clusters. Each row in
figure 3.15 illustrates 20 generated digit from each run, where the last row is generated from the clustering
shown in figure 3.13 and 3.14. From figure 3.15 is it clear to see how the generated digits still suffer from
incoherency and overlapping segments. There are no clear generated digits, which can be characterized as
handwritten and comparing with K = 5 it can be argued that the generation of digits has in fact been worse in
terms of overlapping segments.

Figure 3.15: 100 generated 2 digits for d = 30 features and K = 8 clusters.

Increasing the number of clusters K to achieve better performance therefore seems useless. Still to evaluate
the performance of increasing amount of clusters each row in figure 3.16 illustrates 20 generated digits for
K = {3, 5, 8, 10, 15, 20} respectively.

Figure 3.16: Generated 2 digits for d = 30 features and K = {3, 5, 8, 10, 15, 20} clusters for each row respectively.

This figure clearly shows how the generated digits become more streamlined and similar as K increases, in
which case more and more clusters has only a single element constraining the flexibility in the generation of
digits, as mentioned earlier.

Instead the size of the codebook A is expanded to d = 100 features. This leads to smaller segments ar and
hence additional number of cluster K are required in order to avoid incoherency in the later generation of
digits. The amount of clusters is therefore set to K = 10. The codebook A for with 100 elements is shown in
figure 3.17 as a reference.

After a few iterations, figure 3.18 again shows the resulting scatterplot.

For the larger codebook d = 100 the decorrelated datapoints ar are wide spread still with a relatively strong
concentration close to origo. From the figure it can be seen that every cluster has been updated during the
iterations. The set of resulting cluster means μk are illustrated in figure 3.19.
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3.3 Codebook Clustering by K-Means

Figure 3.17: NMF features for d = 100.
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Figure 3.18: Scatterplot of codebook data (green dots) with initial cluster centers (blue dots) and final means (red
dots), all projected onto the 1st and 2nd principal axis for K = 10.

Figure 3.19: Cluster centers for K = 5.

These cluster centers also resemble half-complete digits each having specific structural features of the 2 digits.
As before for d = 30 this gives potential imperfect grouping of the codebook elements. The resulting cluster
associations φk are illustrated in figure 3.20.

Figure 3.20: Sorted NMF features for d = 100 and K = 5 clusters.

The grouping shows how non-similar segment are associated to the same cluster as we have seen before. In
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3.4 Direct Mixture of Gaussians Model

this case for d = 100 it is even more evident compared to d = 30. Figure 3.21 shows 100 generated digit, where
each row with 20 samples is generated from different initial clusters.

Figure 3.21: Random generated 2 digits for d = 100 features and K = 10 clusters, where each row has a different
set of random initial clusters.

This illustration clearly shows both overlapping and incoherent digits, which hardly resemble anything hand-
written. Based on the previous simulation result for d = 30 it is therefore not expected that an increase of
the amount of clusters K will improve the performance. To evaluate figure 3.22 shows 20 generated digit for
different number of clusters K = {5, 10, 15, 20, 30, 40, 50}.

Figure 3.22: Generated 2 digits for d = 100 features and K = {5, 10, 15, 20, 30, 40, 50} clusters for each row
respectively.

This figure clearly shows how the different cluster sizes K again has failed to generate valid digits. As K
increases the digits become more similar as the model becomes more restricted due to the increasing amount
of clusters with single members as also seen for d = 30.

Summary

In general the algorithm presented in table 3.2 has not proven to be efficient in generating handwritten digits.
The performance of the algorithm is very sensitive to the efficiency of the clustering of the K-Means method in
terms of the amount of clusters K. As the segments are added discretely, i.e. with a weight of either 0 or 1, the
flexibility of the algorithm is further restricted.

Having presented and analyzed the K-Means based algorithm, we proceed with a more sophisticated approach
based on mixture of Gaussian distributions.

3.4 Direct Mixture of Gaussians Model

A natural advancement step in forming a generative model is to employ the mixture of Gaussians model as
presented in section 2.4. By modelling the density of the data, we hope to better capture the underlying
structure of the data and thus generate digits with improved quality. The MoG model can be used to model any
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3.4 Direct Mixture of Gaussians Model

probability density and the most obvious approach is to model the digits directly (hence the title of this section)
and exclude any feature extraction as a pre-processing step. The MoG model can then be written as

p(x) =
K∑

k=1

αk · p(x|Θk, k) (3.2)

where p(x|Θk, k) is the multivariate Gaussian distribution defined in (2.30) and αk is the component prior. To
determine the mixture model parameters Θk = {μk,Σk, αk} we use the EM-algorithm as defined in section
2.4. Using this approach we model the 768 dimensional vector x directly with full covariance matrix, Σfull.

Results:

In evaluating the direct MoG model a set of different amount of components is used, K = {10, 20, 30, 50, 100, 200}
and to generate digit, we extract a random sample from the MoG as described in Appendix A.5. Afterwards the
quality of the generated digits are evaluated visually.

For the simulations we used a log-likelihood tolerance of ΔL = 1e− 3 as a stopping criteria and a maximum of
ITmax = 500 iterations. This initialization of the MoG model is used in all further simulations, unless otherwise
noted.
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Figure 3.23: Convergence of the change in responsibility wk during iterations.

To evaluate the training of the MoG model, the evolution of the change of the responsibility Δwk (expectation
of the hidden variables defined in section 2.4) is shown in figure 3.23. This figure shows how the "EM"-
algorithm has converged within few iterations. For high-dimensional data M = 784 (relative to number of
samples N) the covariance information for any direction is poorly determined due to the curse of dimensionality
(5958/784 = 7.6 samples/dim.), which means the Gaussian mixtures can be shaped and distributed in an
increasing number of ways. This makes it easy for the "EM"-algorithm to find a local maxima in log-likelihood
space and leads to the few iterations.

The corresponding generated digits for K = 10 and K = 30 mixture components are shown below, refer to
appendix A.5 to see how to generate samples from the trained mixture model.

Figure 3.24: Direct modelling of the digits for
K = 10 mixture components (mean vectors in 1st
column).

Figure 3.25: Direct modelling of the digits for
K = 30 mixture components (mean vectors in 1st
column).
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3.5 Mixture of Gaussians Model

In both illustrations each row represents generated digits from a single mixture component, where the 1st or
leftmost digit is the component mean. For both K = 10 and K = 30 these mean digits are in most cases of
reasonable quality with a faint background shadow. However both illustrations show poorly generated digits
which hardly represents anything handwritten. In two cases the model has overfitted to a single digit with a
very small variance. This is evident in row 5 (left) and 4 & 5 (right), where the same digit has been generated in
all cases. This suggest the model complexity is to high due to overfit, but since we also model invalid dataspace
decreasing the model complexity by using diagonal or isoptropical covariance matrix, we risk generating even
more invalid digits. Hence choosing full covariance matrix seems like the right choice.

If we increase the amount of mixture components to K = {100, 200} we get a set of generated digits shown
in figures 3.26 - 3.27. From these digits the same conclusions can be made, where the generated digits are of
poor quality with a few overfitted cases.

Figure 3.26: Direct modelling of the digits for
K = 100 mixture components (mean vectors in
1st column).

Figure 3.27: Direct modelling of the digits for
K = 200 mixture components (mean vectors in
1st column).

Summary

The MoG model were used to model the handwritten digits directly without any feature extraction as pre-
processing. With different amounts of mixture components the simulation clearly showed very poor ability to
generate valid digits. This type of model is thus not very useful as a cognitive generative model.

3.5 Mixture of Gaussians Model

A different approach is to base the generative linear model given in (1.1) on modelling the sources s by a
probability distribution p(s). From p(s) new random sources s can be extracted to generate a new digit x by
using the linear model (1.1). To model the sources we employ the mixture of Gaussians model given by

p(s) =
K∑

k=1

αk · p(s|Θk, k) (3.3)

where each component p(s|Θk, k) is a multivariate Gaussian distribution defined in (2.30) and αk denotes the
component prior as before. To determine the mixture model parameters Θk we again use the EM-algorithm as
defined in section 2.4.

Model Complexity :

As discussed earlier the complexity of the model can be hard to optimize as it is a tradeoff between generating
invalid or noisy digits as we have seen and achieving an overfitted model generating virtually the same digit
multiple times. For the MoG model there are 3 levels of complexity of the covariance matrix, isotropical,
diagonal and full, as shown in section 2.4.1. Eventhough this is a very coarse division, we conduct a few
illustrative simulation to best find the optimal choice of complexity, shown in the following figures.

To better visualize the effect of the constraints figure 3.28 shows a scatterplot of the datapoints sn projected
onto the 1st and 2nd principal components (refer to section A.1). The estimated mixture components are
shown as circles from to the isotropical covariance (refer to appendix A.4), where their relatively small radius
is due to the restriction of neglecting covariance information. In addition it can be seen how the data is
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Figure 3.28: Convergence of mixture components
with isotropical variance.

Figure 3.29: Generated digits from a MoG model
with K = 10 components and isotropical covari-
ance matrix (mean vectors in 1st column).

indeed uncorrelated, as information of one variable gives no information on the other. As the data and mixture
components are projected into a 2D surface for visualization, information of modelling invalid data cannot be
derived from this figure.

The right figure shows the corresponding generated digits, where the 1st column is the mean vector, μk. Initially
they seem very noisy and has many overlapping segments, but to compare the quality the results from the
diagonal and full covariance matrix are shown in the following figures.
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Figure 3.30: Convergence of mixture components
with diagonal variance.

Figure 3.31: Generated digits from a MoG model
with K = 10 components and diagonal covariance
matrix (mean vectors in 1st column).

Figure 3.30 and 3.32 are the same type scatterplot, where the flexibility of the model becomes more evident.
Especially for the full covariance matrix, which has a wide capture of the data structure. For the diagonal
covariance matrix the elliptic shape is clear to see from the figure, but is not necessarily aligned with the axis
due to the projection onto the 1st and 2nd principal component. In comparing all 3 scatterplots it is clear to see
how the isotropical and diagonal covariances have relatively small radius. For the full covariance restriction,
Σ(full) is allowed to capture specific covariance directions, which leads to more elliptic shapes with higher
radius.

The 3 right figures (3.29, 3.31 & 3.33) illustrate the effect of restricting the flexibility of the covariance matrix
Σ, where the 1st digit in each row is the corresponding mean vector, μk. In comparing the generated digits
from the three figures, the model with the isotropical covariance matrix (figure 3.29) shows noisy digits of poor
quality with many overlapping segments. For the diagonal covariance matrix the quality has slightly improved,
but is still to poor. The model with full covariance matrix (figure 3.33) also suffers from overlapping segments,
but in decreasing numbers. For these particular generated digits no overfitted mixture components can be
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Figure 3.32: Convergence of mixture components
with full variance.

Figure 3.33: Generated digits from a MoG model
with K = 10 components and full covariance ma-
trix (mean vectors in 1st column).

identified, but this is mostly due to the relatively low amount of components K = 10, restricting the model
from adapting to specific datapoints. Hence using no restrictions on the covariance matrix (i.e. full) for the
MoG model is the preferred approach in our further simulations, which is presented next.

Results :

In the initial simulation a small codebook with d = 30 features is used for the 2 digit shown in figure 3.7. We
conduct a set of simulations for different amount of mixture components K = {10, 20, 30, 50, 100, 200, 300, 400, 500}.
Only a subset relevant for the analysis is presented here (data from all simulations can be found on the attached
DVD). For the simulations we used a log-likelihood tolerance of ΔL = 1e− 5 as a stopping criteria and a maxi-
mum of ITmax = 500 iterations.

To evaluate the training of the MoG models for different sizes, figure 3.34 and 3.35 show the evolution of the
log-likelihood L(Θ) =

∑
n ln p(xn|Θ) as defined in (2.15) during the iterations of the "EM"-algorithm.
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Figure 3.34: Evolution of the Log-Likelihood L(Θ)
for K = {10, 50, 100, 500} and d = 30

0 100 200 300 400 500
−2

0

2

4

6
x 10

5

Amount of components, K

Lo
g−

Li
ke

lih
oo

d

Figure 3.35: Final Log-likelihoods for different
amount of components for d = 30.

The left figure depicts the evolution log-likelihood L(Θ) during training of the model and how the "EM"-
algorithm finally converges to a likelihood maximum. The different lengths is caused by the individual iter-
ations needed to converge. The right figure show how the log-likelihood L(Θ) increases with the amount of
components as the model becomes more complex. Thus selecting a rather complex model is not necessarily
desired as we might achieve an overfit to the training data and thus not model the underlying structure.

Figures 3.36 - 3.39 show a set of generated digits for only a subset of the component sizes K, where the 1st
column in each figure is the corresponding component mean.

The top left figure with K = 10 mixture components reveals noisy digits as we have seen before similarly in
figure 3.33. Increasing the amount of components to K = 50, 100 and 500 to allow greater flexibility of the
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Figure 3.36: Generated digits from a MoG model
with d = 30 features, K = 10 components and full
covariance matrix (mean vectors in 1st column).

Figure 3.37: Generated digits from a MoG model
with d = 30 features, K = 50 components and full
covariance matrix (mean vectors in 1st column).

Figure 3.38: Generated digits from a MoG model
with d = 30 features, K = 100 components and
full covariance matrix (mean vectors in 1st col-
umn).

Figure 3.39: Generated digits from a MoG model
with d = 30 features, K = 500 components and
full covariance matrix (mean vectors in 1st col-
umn).

MoG model do generate less noisy digits with fewer overlapping segments. With K = 500 mixture components
the MoG model tends to overfit, but we still generate sufficiently different digits. Eventhough these digits are
of fairly good quality, the large amount of components yields a poorly estimated covariance matrix as discussed
previously due to the curse of dimensionality (5958/500 = 11.9 samples/dim.) and simply fails to capture the
essential correlation between the codebook elements as also discussed earlier.

Instead we increase the size of the codebook A to d = 100 and re-simulate with the same stopping criteria.
Again the amount of components is set to K = {10, 20, 30, 50, 100, 200, 300, 400, 500} and only present a subset
of these. Initially the evolution of the "EM"-algorithm in training the MoG models is shown in figures 3.40 and
3.41.
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Figure 3.40: Evolution of the Log-Likelihood L(Θ)
for K = {10, 50, 100, 500} and d = 100 features.
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Figure 3.41: Final Log-likelihoods for different
amount of components for d = 100 features.

The left figure reveals a successfully converged "EM"-model as before. The right figure depicts how the log-
likelihood L(Θ) increases as the MoG model becomes more complex as we have seen before. The corresponding
generated digits are shown in figures 3.42 - 3.45, where the 1st column is the mean vector as before.

The top left figure for K = 10 reveals noisy digits with many overlapping segments similarly as for d = 30.
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3.5 Mixture of Gaussians Model

Figure 3.42: Generated digits from a MoG model
with d = 100 features, K = 10 components and
full covariance matrix (mean vectors in 1st col-
umn).

Figure 3.43: Generated digits from a MoG model
with d = 100 features, K = 50 components and
full covariance matrix (mean vectors in 1st col-
umn).

Figure 3.44: Generated digits from a MoG model
with d = 100 features, K = 100 components and
full covariance matrix (mean vectors in 1st col-
umn).

Figure 3.45: Generated digits from a MoG model
with d = 100 features, K = 500 components and
full covariance matrix (mean vectors in 1st col-
umn).

Increasing K results in digits with less noise, but not with equal quality as for d = 30 in previous figures 3.36
- 3.39. With the larger codebook d = 100, the model parameters Θ become harder to estimate with sufficient
precision, especially the covariance matrix as discussed earlier. This is evident to see for K = 500 in figure 3.45,
where model clearly suffers from overfit with little variance. The few digits, which are not similar to the mean
vector (leftmost digit in each row) are of very poor quality, due to the poorly estimated covariance matrix.

Multilayered MoG model :

Based on the MoG model in (3.3) we can also form dual-layered MoG model by modelling each mixture
component with k′ sub mixtures. The dual-layer MoG model can be expressed as

p(s) =
K∑

k=1

αk · p(s|Θk, k) =
K∑

k=1

αk ·
[

K′∑
k′=1

αk′ · p(s|Θk′ , k′)

]
(3.4)

As the datasample assignments for each mixture component are soft for the MoG model we must associate
the datasamples by hard-assignment for the top-layer mixtures and use these samples as the dataset for each
sublayer mixture component. Incorporating the second layer gives us a second prior αk′ to attenuate the
mixture components with few samples associated (refer to eq. (2.46)). However if we neglect the prior for the
sublayer αk′ then this model is exactly the same as a single-layer MoG model with kk′ components.

As just shown the modelling capabilities for the single-layer MoG model was not sufficient for cognitive data,
we do not expect any multilayered MoG model to outperform the single-layered MoG model.

Summary :

Based on our linear generative model x = As, the sources s were modelled using a MoG density estimator
for different amount of components K and codebook sizes d. For the small codebook d = 30, this approach
generated noisy digits for low K. As K increased the quality of the digits improved, but due to the limited size
of the dataset N the model parameters for the high value of K became poorly estimated. The model simply
failed to capture the essential correlation in the sources s. In essence it becomes a tradeoff between biased
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3.6 Mixture of Factor Analyzers

model yielding noisy digit and an overfitted model with poor parameters. Increasing the codebook to d = 100
only amplified the problem of estimating the model parameters with sufficient precision.

Thus this model does unfortunately not have the ability to generate digits of sufficient quality.

3.6 Mixture of Factor Analyzers

One of the major limitations on the MoG model is the rather coarse restrictions available as we have seen.
Using the most flexible approach (full covariance matrix) resulted in poorly estimated model parameters and
thus unsatisfactory generated digits. As an improvement we introduced the mixture of factor analyzers (MFA)
earlier in section 2.5 as a mixture model with dimension reduction capabilities. In this section we employ the
MFA algorithm to model the sources sn. The model can be written as

p(s) =
K∑

k=1

αk · p(s|Θk, k) (3.5)

where p(s|Θk, k) = N{μk,ΛkΛT
k + Ψ} is the factor analyzer as defined earlier with model parameters Θk =

{αk, μk,ΛkΨ} and αk denotes the component prior. The model is trained using the "EM"-algorithm as defined
in section 2.5 (refer to the associated DVD for the MATLAB code) 8.

Compared to the MoG model the MFA model has the extra input parameter d′ defining the dimension reduction.
This parameter is especially important as it may allow the model to capture cognitive correlations in sub-
dimensional dataspace as opposed to the MoG model. Setting d′ too low may cause this cognitive correlation
to be projected onto a sub-dimension too low preventing efficient modelling. In contrast if d′ approach the
original dimension of the dataspace and hence may suffer from the same problem of modelling sufficiently as
the MoG model did.

Results :

For the simulations we use two different cookbook sizes of cognitive features d = {30, 100} and a wide
range of amount of mixture components K = {10, 20, 30, 50, 100}. For the reduction factors we use d′ =
{5, 8, 10, 15, 20, 25} to cover a wide range. Only a subset of results will be presented here relevant for the
analysis, please refer to the DVD for a complete simulation results reference.

In the initial simulation we use a codebook of size d = 30, use K = 10 mixture components and evaluate for all
different reduction factors d′ = {5, 8, 15, 25}. From the trained model a set of digits were generated (refer to
appendix A.5) and evaluated visually.

For the simulations we used a ΔL = 1× 10−5 as a stopping criteria and a maximum of 500 iterations allowed.
This initialization of the MFA model is used for all further simulations unless otherwise noted. The MATLAB code
for the simulations can be found on the DVD. Figures 3.46 and 3.47 show the training of the MFA model for
different reduction factors d′.
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Figure 3.46: Evolution of the Log-Likelihood L(Θ)
for d = 30 and d′ = {5, 8, 10, 15, 20, 25}
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Figure 3.47: Log-likelihoods for different values of
dimension reduction for d = 30.

8Available from the website of Prof. Zoubin Ghahramani at http://learning.eng.cam.ac.uk/zoubin/software.html
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3.6 Mixture of Factor Analyzers

The left figure 3.46 shows how the log-likelihood has successfully converged for all d′. The noise on the flat
asymptote is due to LL violations, where the log-likelihood failed to increase during iterations. In those cases
the MFA algorithm re-iterated until the likelihood increased. The relatively high noise level has also caused
the algorithm to fail to meet the stopping criteria until the maximum number of iterations allowed was met.
This indicates an instability in the implementation of the MFA algorithm, but since the algorithm is considered
converged, we have done no further investigations to remedy this issue. The right figure 3.47 reveals how the
likelihood increase as the model becomes more complex for increasing d′, as expected.

Figures 3.48 - 3.51 show a set of generated digits for only a subset of the component sizes K, where the 1st
column in each figure is the corresponding component mean vector, μk.

Figure 3.48: Generated digits from a MFA model
with d = 30 features, K = 10 components and a
reduction to d′ = 5 dimensions (mean vectors in
1st column).

Figure 3.49: Generated digits from a MFA model
with d = 30 features, K = 10 components and a
reduction to d′ = 8 dimensions (mean vectors in
1st column).

Figure 3.50: Generated digits from a MFA model
with d = 30 features, K = 10 components and a
reduction to d′ = 15 dimensions (mean vectors in
1st column).

Figure 3.51: Generated digits from a MFA model
with d = 30 features, K = 10 components and a
reduction to d′ = 25 dimensions (mean vectors in
1st column).

The generated digits in the top left figure 3.48 with the lowest dimension d′ = 5 are of fairly good quality with
a variance sufficiently large to generate different digits, still with a boldface style. Increasing to d′ = 8 gives
slightly more noisy digits as we have seen before for the MoG model and for d′ = 15 the digits become worse,
as can be seen in figure 3.50. For d′ = 25 the dimension of the modelled data is close to the original, which is
evident from figure 3.51, where the we have failed to capture the underlying cognitive structure of the data,
similar to the MoG model.

If we increase the amount of mixture component K = 30, the evolution of the log-likelihood is shown in figure
3.52 and 3.53. These figures show the same evolution as for K = 10 as expected. From figure 3.52 the noise
on the flat asymptote is present again, but since the algorithm has converged successfully we do not consider
this a problem for the simulation. The corresponding generated digits are illustrates in figures 3.54 - 3.57.

The generated digits shown all suffer from the noise of overlapping segments and boldface type as we have
seen before and for increasing amount of clusters K = {50, 100} any generated digit suffer from these defects
in increasing numbers (these results are not shown, but can be found on the DVD). In fact simulations for the
larger codebook with d = 100 cognitive features, the same defects occur to an even greater extent due to the
increased number of parameters to determine for the model.

Summary :
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Figure 3.52: Evolution of the Log-Likelihood L(Θ)
for d′ = {5, 8, 10, 15, 20, 25}
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Figure 3.53: Log-likelihoods for different values of
dimension reduction.

Figure 3.54: Generated digits from a MFA model
with d = 30 features, K = 30 components and a
reduction to d′ = 5 dimensions (mean vectors in
1st column).

Figure 3.55: Generated digits from a MFA model
with d = 30 features, K = 30 components and a
reduction to d′ = 8 dimensions (mean vectors in
1st column).

Figure 3.56: Generated digits from a MFA model
with d = 30 features, K = 30 components and a
reduction to d′ = 15 dimensions (mean vectors in
1st column).

Figure 3.57: Generated digits from a MFA model
with d = 30 features, K = 30 components and a
reduction to d′ = 25 dimensions (mean vectors in
1st column).

Introducing the MFA model with dimension reduction capabilities was done to allow an improved capture of
any cognitive correlation in the image dataset and to avoid the poor estimated covariance information observed
for the MoG model. In the simulations digits with improved quality compared to the MoG model was generated,
but were still suffering from the defects of noise and overlapping segments. In general this type of MFA model
cannot be characterized as a sufficient cognitive model.

3.7 Summary

In section 2 the class of mixture models was introduced and described as a basis of generative linear models,
x = As. In this part we have formed a set of generative models based on clustering and evaluated their per-
formance in terms of digit generation for the MNIST dataset. First a model using K-Means to cluster codebook
features to assemble representative digits revealed very poor performance in generating handwritten digits as
the model failed to capture any underlying correlation between the features.
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3.7 Summary

Secondly the mixture of Gaussians model were introduced and showed improved generated digits, but suf-
fered from poorly estimated covariance matrices depending on model complexity leading to poorly generated
handwritten digits in either case.

As a third model type, the mixture of factor analyzers were presented as an advancement to the MoG model to
better capture the sub-dimensional correlation between cognitive features. On the MNIST dataset this model
type did make a small improvement on the quality of generated digits, but suffered from the same defects as
the MoG model.

In general the class of mixture models with radial kernel functions are thus not sufficiently advanced or complex
to capture the correlation of cognitive features for handwritten digits as data.
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4.1 Hinton’s Deep Belief Nets

4. DEEP NETWORK MODELS

A different approach for probability density estimation is based on non-linear multilayered networks or Deep
Networks as introduced earlier used for both generation and as discriminative functions. In this section we
introduce a multilayered network model based on a non-linear matrix factorizations described in the following
section. Before we describe our own deep network model we introduce the concept of deep belief nets based
on Hinton et al. [12]

4.1 Hinton’s Deep Belief Nets

A deep belief network is formed by L individual network layers each with a set of visible units v = {v1, v2, . . .}
and hidden units h = {h1, h2, . . .}. The belief net can be probabilistically modelled for an observed vector x by
the joint distribution

p(x,h1,h2, . . . ,hL) = p(x|h1)p(h1|h2) · · · p(hL−2|hL−1)p(hL−1,hL) (4.1)

where hl represent the hidden units at layer l.

4.1.1 Restricted Boltzmann Machine

In the logistic belief net (DBN) used by Hinton et al. the net is composed by stochastic binary units and the
individual layers are modelled by a Restricted Boltzmann Machine (RBM) expressed by the likelihood

p(hl
j = 1|hl+1) = sigm

(
− bl

j −
nl+1∑
k=1

Al
kjh

l+1
k

)
(4.2)

where sigm(x) = 1/(1 + exp(−x)), bl
j is the bias for unit j in layer l and Al denote the weight matrix for layer

l. The top-level prior p(hL−1,hL) has a joint distribution given by

p(hL−1,hL) =
1
Z

exp
(
− (hL)T A(hL−1)− bT (hL−1)− cT (hL)

)
(4.3)

where A is the weight matrix and b and c are the biases for visible and hidden units respectively.

4.1.2 Complementary Priors

For a generative DBN the likelihood of observed data p(x|h) can easily be computed by (4.2). One of the difficult
aspects of inferring the posterior of the hidden variables p(h|x) in directed belief nets is dependency between
the individual hidden units {h1, h2, . . .}. This dependency is also known as the phenomenon of ’explaining
away’, where if one event has explained an observation, then it ’explains’ away all other possible explainable
events for that particular observation [12].

One of the most important properties of Hinton’s DBN model is the introduction of complementary priors to
eliminate this ’explaining away’, where such priors ensures the posterior p(hl+1|hl) factorizes and thus induces
independence, i.e. p(hl+1|hl) =

∏
j p(hl+1

j |hl). It is not explicitly clear from Hinton et al. how these comple-
mentary are implemented (refer to [12]), except the practical induction of the complementary priors for DBN
give rise to a posterior calculated as

p(hj = 1|v) = sigm
(
− cj −

∑
k

Ajkvj

)
(4.4)
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4.1 Hinton’s Deep Belief Nets

Hence the transposed weight matrix AT is used to infer the posterior of the hidden variables. This is a very
powerful results as it allows us to sample easily from both the likelihood p(v|h) and posterior p(h|v) using
these tied weights.

4.1.3 Infinite belief network

For an infinite directed model with tied weight we achieve complementary priors at all layers as shown in figure
4.1. Due to the tied weights this model is an equivalent to a single layer RBM described above.

To generate data from an RBM corresponds to extracting samples from p(v), where we start with a random
state in one of the layers, visible or hidden. By performing alternating Gibbs sampling, i.e. iterating between
extracting from p(v|h) and p(h|v) (refer to appendix A.7), and continue until we sample from the equilibrium
distribution, we conduct the same operation as generating data from the infinite belief net with tied weights.
Each full step in the Gibbs sampling process is thus equivalent to computing the exact posterior distribution in
a layer of the infinite logistic belief net.
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Figure 4.1: Infinite directed logistic net with tied
weights at each layer equivalent to single layer
RBM.

H3

(A
2
)
T

H1

H2

X

(A
1
)
T

A
2

A
1

A
3

Figure 4.2: The deep belief network with undi-
rected connections between top two layers, where
the generative and recognition weights are tied for
each layer.

4.1.4 Learning

The weights of an RBM can be learned unsupervised from maximizing the likelihood function and for a single
weight a11

ij from unit j in layer H1 to unit i in layer V1 the gradient of the log can be expressed as [12]

∂ log p(v1)
∂a11

ij

= E{h1
j(v

1
i − v2

i )} (4.5)

This shows how the update of a weight is only dependent on local data, i.e. the input and output associated to
that weight. Due to the equivalence to the infinite belief net this derivative can be collapsed for all weights and
layers to the difference between the average correlation of the top and bottom layers of the infinite net [12]

∂ log p(v1)
∂aij

= E{v1
i h1

j} − E{v∞i h∞
j } (4.6)

where the term E{v∞i h∞
j } corresponds to the top layer of the infinite belief net and can be found by running

Gibbs sampling on the RBM until it reached equilibrium distribution. In addition (4.6) also shows that if the
RBM models the true distribution of the visible data v1, the gradient becomes zero.
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4.1 Hinton’s Deep Belief Nets

Greedy Learning

In Hinton’s approach the contrastive divergence is used instead of ML learning, where the top layer correlation is
measured after only n steps of the Markov chain Gibbs sampling. This corresponds to ignoring the derivatives
of all layers above n and thereby induces quantization. It can further be shown that the contrastive divergence
learning it equivalent to minimizing the Kullback-Leibler divergence KL

(
p1||p∞θ

)−KL
(
pn

θ ||p∞θ
)

[12].

Applying contrastive divergence in the obvious way to a belief net with different weights at each layer the
algorithm takes far too long to reach the conditional equilibrium state with a clamped data vector and thus
renders practical useless. Instead Hinton et al. suggest a two step procedure for training a deep belief network
with untied weights, initially with a greedy algorithm to achieve approximate weights for a subsequent step of
fine-tuning all weights.

The idea behind the greedy algorithm is to allow each layer in the sequence to receive a different representation
of the data and figure 4.2 illustrates a hybrid belief net, where the top two layers are undirected connected.
This corresponding to modelling p(h4,h5, . . . ,h∞) in this case and is thus equivalent to have infinitely many
higher layers with tied weights.

For inferring A1 the greedy algorithm assumes the weights for higher layers will be used to construct a comple-
mentary prior for A1. This is equivalent to assuming that all the weight matrices are constrained to be equal.
Once A1 has been learned, the data can be mapped through (A1)T to create higher-level ’data’ at the first
hidden layer. The unsupervised greedy algorithm can be summarized in table 4.1.

1. Learn A1 assuming all weight matrices are tied.

2. Freeze A1 and use (A1)T to infer the factorial approximate posterior distri-
butions over hidden variables in the first layer, even if subsequent changes in
higher level weights mean that this inference method is no longer correct.

3. Keeping all the higher weight matrices tied to each other, but untied from A1,
learn an RBM model of the higher-level ’data’ that was produced by using (A1)T

to transform the original data.

Table 4.1: Pseudocode for greedy learning algorithm

For equal sized layers subsequent layers are initialized with the weights learned from the parent layer. It can be
shown that the greedy algorithm induces a variational bound on the negative log probability of a data vector v1

ensuring adding a new layer will never decrease the log probability of the data under the full generative model
[12].

Fine Tuning

After completing the greedy learning of the weights in all layers, neither the higher layer weights nor the simple
inference procedure are optimal for the lower layers. The fine-tuning algorithm proposed as the second learning
step is conducted to revise the weights that were learned first to better fit with the weights that were learned
later (top layer).

For the fine-tuning all weights are untied within layers, but retain the restriction that the posterior in each
layer must be approximated by a factorial distribution in which the variables within a layer are conditionally
independent given the values of the variables in the layer below. Hinton et al. uses a variant of the wake-sleep
algorithm, where the generative weights are updated during a ’wake’ phase and the recognition weights are
updates during the ’sleep’ phase.

In the up-pass step the recognition weights are used to stochastically choose a state for every hidden variable.
The generative weights on the directed connections are then adjusted using the maximum likelihood learning
rule in eq. (4.5). The weights on the undirected connections at the top level are learned as before by fitting
the top-level RBM to the posterior distribution of the previous layer. The ’down-pass’ initiates with a state of
the top-layer and uses the generative weights to stochastically activate each lower layer in turn. By initializing
the top layer with an up-pass step and then only allowing a few iterations of alternating Gibbs sampling before
initiating the down-pass, a ’contrastive’ form of the wake-sleep algorithm is achieved, which eliminates the
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need to sample from the equilibrium distribution of the associative memory. For a more detailed description of
the fine tuning algorithm refer to Hinton et al. [12].

4.1.5 Implementation

In the practical formation of the deep belief net Hinton et al. augments a classifier network at the top-level
associative memory and thus uses supervised training to learn data labels. The labels is represented by turning
on one unit in a ’softmax’ group of 10 units, i.e. c = {0 . . . 1 . . . 0}. Classifying an observed data is conducted
by propagating the data up through the layers and here Hinton et al. proposes different methods for evaluating
the class relation. Refer to [12] for details.

To generate class conditional samples from the model the desired label c = {0 . . .1 . . . 0} is clamped and a
sample is then produced by conducting alternating Gibbs sampling in the top-level associative memory p(v,h|c)
until the equilibrium distribution is reached. The sample is then propagated down through the layers in a single
downpass.

This short outline of the deep belief network model introduced by Hinton et al. [12] serves as motivation for our
simpler deep network model base on only unsupervised greedy learning. Throughout the detailed description
of our model we will note the essential differences for better understanding on the model simplifications.

4.2 The Network Model

Motivated by the deep belief net by Hinton et al. we propose a simpler hierarchical generative model build
from individual modules as opposed to using the same model for each layer as Hinton et al. does.

A deep network model is built on hierarchical layered non-linear functions. If we consider N observed M
dimensional datavectors X = {xn}Nn=1, we base the generative deep net model on the non-linear generalized
factorization of a single observation given by

x = Af(s) (4.7)

where the columns of A = {ar}dr=1 are the M dimensional feature vectors and f(s) is the non-linear mapping
function of the d dimensional sources s. This gives a far more adaptable model, where the linear factorization
in (1.1) now becomes a special case with f(s) = s. In such case an L multilayered architecture could be
collapsed into an equivalent 1-layer structure due to the linearity, i.e. x = A1f1(A2f2(...ALfL(s))) and thus
the multilayered structure is no longer appropriate. Introducing the non-linearity is hence essential for deep
network models.

To induce greater flexibility of our non-linear model (4.7) we add an extra bias or threshold term. On vector
form this can be written as x ≈ Af(s) + b, where b is an M -dimensional vector. By augmenting A and the
vectors s the threshold b can be included in matrix A by

A← [
A b

] ∧ sn ←
[

sn

1

]
(4.8)

i.e. A is now a M×d+1 matrix and s a d+1 dimensional vector. For a single observed sample x this generative
model can graphically be illustrated in the network structure as depicted in figure 4.3.

From our non-linear model (4.7) we can model the observed data x probabilistically by expressing p(x) as a
marginalization over the sources s, written as

p(x) =
∫

p(x, s) ds =
∫

p(x|s)p(s) ds (4.9)

where p(s) is the unknown distribution of the sources, which for our deep network is modelled in subsequent
layers by the likelihood p(sl|sl+1). Thus for an L layered model p(x) =

∫
p(x|s1)p(s1|s2) . . . p(sL) ds.

This is a somewhat different model than Hinton’s belief net in (4.1), where we marginalize over the sources s
at the top-layer instead of using an undirected associative memory modelling a joint distribution. This means
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       Non-linear mapping function:    s

.  .  .  .
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Figure 4.3: Network structure of modelling a single datasample. The colored weights illustrate the column vectors
of the codebook matrix, ar

we do not implement complementary priors and thus cannot compute the posterior p(sl+1|sl) by performing an
up-pass step with the transposed weight matrix AT as easy as Hinton, as we shall see.

From the linear decomposition wrt. f(s) in (4.7) we have implicitly assumed additive Gaussian noise (refer to
appendix A.6 for details) as we did for NMF in section 2.1. We can therefore express the likelihood of the input
sl−1 for any layer as the probability conditioned on the sources given by the Gaussian distribution

p(sl−1|sl) =
1√

(2π)M |σ2I| exp
(
− 1

2σ2
(sl−1 −Af(sl))T (sl−1 −Af(sl))

)
(4.10)

where the covariance σ2 is an M dimensional vector, i.e. the covariance matrix is assumed diagonal with all
correlation in x represented in the factorization As. This notation in (4.10) means the initial layer with input
x is a special case, where x = sl−1.

For the top-level prior p(s) we assume independent priors, i.e. p(s) =
∏

i p(si) and model the sources by the
Laplace distribution given by

p(s) =
α

2
exp(−α|s|) (4.11)

The Laplace distribution is illustrated in figure 4.4.
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Figure 4.4: The Laplace distribution for different scale parameters.

From both the definition in (4.11) and figure 4.4 is it evident to see that for large scale parameters α only small
value of s are encouraged. In contrast for α = 0 we achieve the uniform distribution, where p(s) = 0 while∑

s p(s) = 1 as it is still a probability. This basically means all sources are equal probable.

The Classifier

The general properties of our model is currently based on allowing generation of new data from a sub-
dimensional codevector s. If we assume the complete observed dataset consist of C individual categories
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such that each datasample x has an attached label associating it to one of C classes, then if a source vector s
holding valid generative information it must also hold corresponding classifying information.

For classification problems we introduce a non-linear discriminant function as a mean to evaluate the relation of
an observed datasample x to each of C classes. One of the simplest discriminant functions defines a non-linear
decision boundary or discriminant in multidimensional space and can be expressed on similar form as (4.7) by

v = Wf(s) (4.12)

where W is the C × d + 1 dimensional weight matrix (d + 1 due to the augmented threshold) and f(s) is the
corresponding d dimensional non-linear source for the datasample x. The row vectors of W can initially be
interpreted as the normal-vectors defining the discriminative hyperplane in d + 1 dimensional space for the
linear case of f(s) = s, but since f(s) is non-linear these discriminants are also non-linear. In addition these
row vectors can also be seen as prototypes versions of f(s) for each class. The C dimensional output vector v
then holds the quantitative relation to each class, where the input s should be labeled with the class c with the
highest element in v = {vc}Cc=1.

A discriminant function on the form (4.12) also highlights the importance of the augmented threshold b.
With no bias the discriminative boundaries at S = 0 intercept origo (assuming f(0) = 0) and thereby limits
the discriminative capabilities of the function. By adding the threshold b we increase the flexibility of the
classification. The parallel classification network can be combined with the generative network from the single
layered architecture in figure 4.3 by augmenting the classifier as shown in figure 4.5. The figure also illustrates
how an observed sample x is classified through the non-linear mapping of a corresponding source s, this will
be more clear later.

f(S)

Softmax X

. . . .
c0

AW

c1 c9

‘2’

Classifier

Figure 4.5: Architecture of the augmented classifying softmax function

Assume we want to classify a d-dimensional codevector s into C classes, i.e. model the conditional posterior
given by yc = p(c|s). In order to ensure the output v represents probabilities, i.e. vc ∈ [0; 1] and

∑C
c=1 vc = 1,

we map the linear outputs through a normalized non-linear exponential function called softmax [4] to derive
the posterior probabilities yc expressed as

yc = p(c|s) =
exp(vc)∑C

c′=1 exp(vc′)
=

exp(wcf(s))∑C
c′=1 exp(wc′f(s))

(4.13)

where wc is the c’th row vector of the weight matrix W. Using the softmax function to obtain class conditional
probabilities has a built-in redundancy as

∑
c yc = 1. This means we can model C − 1 classes and infer the last

class as yC = 1−∑C−1
c=1 yc. In reality this means a small reduction in computation time for the softmax function

and has no effect on the classification performance.

In this context it is important to identify the difference between the generative network and the classification
network in terms of modelling. The generative model given by (4.7) learns the features A and sources s
unsupervised and seeks to represent the observed x such that the sources hold information maximizing recon-
struction, which may be potentially all the elements in s. In contrast the discriminative model in (4.7) is trained
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supervised and only learns parameters W and s by as much information as are required to specify the label of
the observed x. This means potentially only a few elements in s may be effective.

Hence the generative model can learn low-level features without requiring feedback from the labels and can
thus learn many more parameters than the discriminative model. In addition the matrices A and W are also
interpreted differently as mentioned despite the same form of decomposition in (4.7) and (4.12). By combining
the generative and discriminative network we form a hybrid model trained both super- and unsupervised, which
has the potential of improved classification performance compared to a stand-alone discriminative model.

With the introduction of the classifier network we can expand our probabilistic model in (4.9) to include
dependency to the class labels by expressing the combined model by the joint distribution p(x, c) as

p(x, c) =
∫

p(x, s, c) ds =
∫

p(x|s)p(c|s)p(s) ds (4.14)

Finally we introduce a set of non-linear mapping function inducing different constraints in relation to visual
cognitive representation, defined next.

Non-negative Constrained Mapping Function

The non-linear mapping function f(s) is essential for a deep network and can be formed with different con-
straints to extract features of interest. For the two first mapping functions we re-induce the constraint of
non-negativity in order to extract sparse parts-based features with the motivation to obtain cognitive feature as
for NMF in section 2.1.

For the non-linear decomposition in (4.7) we could initially define the non-linear mapping function f(s) as a
non-negative sigmoid function on the form f(s) = exp(s)

1+exp(s) , shown left in figure 4.6. As the sigmoid function
unfortunately also include the negative region of s and thereby intercepts in f(0) = 1/2 we indirectly introduce
a bias to all sources of 1/2, since we only model non-negative values of s, resulting of insufficient modelling
of X. To accommodate the sources are pre-mapped through a non-negative logistic function s ← ln(s). By
inserting s into f(s), we finally obtain

f(s) =
exp(ln(s))

1 + exp(ln(s))
=

s
1 + s

(4.15)

The redefined f(s) is now a non-linear function with f(0) = 0 and a dynamic range of [0;1] useful for non-
negative mapping, as depicted right in figure 4.6.
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Figure 4.6: Left: The non-negative sigmoid function f(s). Right: The non-negative mapping function in (4.15).

Unconstrained Mapping Function

A simple extension of the augmented non-linear matrix factorization in (4.15) is to negate the non-negativity
constraint and allow full dynamic range of the sources s. This leads to potential modelling of the oriented
Gabor-like filters in the primary visual cortex as discussed in section 1.2. Initially we could negate the extra
pre-mapping function s← ln(s) presented for the non-negative constraint to avoid negative values of s resulting
in the initial function depicted left in figure 4.6 as our mapping function given by
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f(s) =
exp(s)

1 + exp(s)
(4.16)

As this function includes a bias at f(0) = 1/2, we enforce regulated sources to be located around f(s) = 1/2
and not origo. This could however be accommodated by the threshold vector b, but instead we introduce the
full-range unbiased sigmoid tanh-function as an additional mapping function given by

f(s) = tanh(s) (4.17)

This non-linear mapping function has a dynamic range of [-1;1] and is symmetric around origo as shown in
figure 4.7 making it suitable for mapping regulated sources.
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Figure 4.7: The unconstrained sigmoid mapping function f(s).

Summary

With the motivation from deep belief nets by Hinton et al. [12] we have introduced a simpler generative deep
network based on a continuous-valued linear model for each layer as opposed to the RBM proposed by Hinton
et al.

The top-level prior p(s) are modelling by the simple Laplace distribution leading to the absence of using com-
plementary priors in contrast to using a joint distribution modelling an infinite undirected net. This means a
reverse operation computing the posterior of the hidden units cannot be conducted by a simple propagation
using transposed weights matrices.

4.3 Learning

In this section we describe how the model parameters are learned layer by layer. Our approach of learning is
not based on a re-training or fine-tuning of the model in a second step in contrast to the deep belief model
proposed by Hinton [12], where a greedy algorithm is only used for initializing parameters for a subsequent
fine-tuning. This means our model will be easier to train, but may suffer from suboptimal solutions.

The network model given in (4.14) is parameterized by the codebook features A and the classification weights
W. To learn these parameters from an observed dataset X = {xn}Nn=1 we infer the parameters from maximizing
the likelihood as described in 2.3.1. We derive a set of update rules initially for the generative model for the
different mapping functions and afterwards for the augmented classification network defining the hybrid model.

4.3.1 Non-Linear Non-negative Matrix Factorization

For the generative model we infer the feature matrix A by maximum likelihood and thus define a cost function
ELS as the negative log-likelihood of p(x|s). As derived in appendix A.6 and shown for regular NMF the
negative log-likelihood for all samples leads to the least-squares estimate expressed as
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ELS = −
N∑

n=1

ln p(xn|sn) =
1

2σ2
‖ X−Af(S) ‖2 (4.18)

The non-linearity induced in f(s) provide the model with great flexibility to model highly non-linear structures,
but also increases the probability of achieving an overfit, where the model (4.7) has adapted to the specific
training samples instead of an underlying structure. In order to accommodate we induce a regulation of the
codevectors s, where the complexity of the model can be controlled. A classic approach for regulation is to
augment the cost-function with an L1- or L2-norm weight-decay term. We therefore define our cost function as

ELS =
1

2σ2
‖ X−Af(S) ‖2 +α|S| (4.19)

where α controls the degree of regulation. This approach ensures large values of s are given an additional
penalty encouraging small or sparse sources located close to origo in the right figure of 4.6. The degree of
regulation can further be adjusted by the reg.-factor α, where α = 0 corresponds to no regulation induced.

A large reg. factor will force the sources s to have more linear properties similar to (2.2) in the region close
to origo of f(s) reducing their non-linearity. In terms of optimizing the sources the regulation sets a lower
bound of the cost-function in (4.19). In contrast this means a reg. factor too high may prevent the model from
learning or adapting to an underlying structure of the data by enforcing a hard restriction on the sources. This
is the classic Bias/Variance tradeoff and is discussed further shortly in appendix A.6.

Adding the regulation term and encouraging small values of s can also lead to a simple downscaling of the
sources s and a corresponding upscaling of the columns of A. In a strictly linear case, i.e. X = AS a linear
post-scaling of A and S are often included to avoid such case [22]. In our case with the non-linear f(s) any
scaling is not necessary due to the limited dynamic range of s. Adding this type of regulation term to the cost
function also corresponds to lowering the effective amount of parameters for the model [9].

The augmentation with the regulation term corresponds to including prior information of s derived from the
negative log up to an additive constant of the Laplace distribution of the sources given in (4.11).

This means we are not inferring the parameters based on maximizing a likelihood, but on the posterior p(S|X)
instead or by maximum a posteriori (MAP). From bayes in (2.13) maximizing the posterior corresponds to our
cost function (4.19) defined as − ln p(X,S) = − ln p(X|S)p(S). With this cost function we use the same steps
as for regular NMF to derive a set of update rules for the sources, which becomes

Sr,n ← Sr,n −Δ
∂ELS

∂Sr,n
= Sr,n + ηr,n

[
1
σ2

(
(AT X)r,n − (AT Af(S))r,n

)
f ′(S)r,n − α sign(S)r,n

]
(4.20)

where f ′(S) denotes the 1st order derivate or gradient of the non-linear mapping function. By setting ηr,n =
Sr,n

1/σ2·(AT Af(S))r,nf ′(S)r,n+α we can rewrite the update of S and similar for A into a set of multiplicative update
rules given by

Sr,n ← Sr,n
(AT X)r,nf ′(S)r,n

(AT Af(S))r,nf ′(S)r,n + α · σ2
∧ Am,r ← Am,r

(Xf(S)T )m,r

(Af(S)f(S)T )m,r
(4.21)

This shows that the update equations for non-linear NMF are comparable with regular NMF forming a coordinate-
descent "EM"-type algorithm with the non-linear mapping function f(s) induced directly on the sources. The
update for the sources S also reveal how the dependency to the gradient f ′(S) disappears if no regulation term
is used, i.e. α = 0. The convergence properties for (4.21) are still applicable as for regular NMF, refer to [18].
In addition the non-negativity as we achieved for regular NMF is also maintained for the non-linear NMF. In
contrast this means the variables X, A and f(S) must all remain non-negative during the update.

In the practical implementation of the non-linear NMF, a step-size parameter is introduced similarly as for
regular NMF in (2.9) to control the convergence speed. The threshold b is further maintained by only updating
the first d dimensions of the sources in (4.21), refer to appendix B.3 for the MATLAB code.
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4.3.2 Non-linear Unconstrained Matrix Factorization

For the non-negative feature extraction in the previous section, the non-negative constraint provoke sparse
codebook features in A, which can be interpreted as cognitive (this will be more clear in later simulations). By
disregarding the non-negative constraint the codebook elements are given max. freedom in terms of dynamic
range and are hence not encouraged being sparse or parts-based as desired. To enforce sparse and cognitive
features we augment the cost-function (4.19) with an additional regulation term for A by

ELS =
1

2σ2
‖ X−Af(S) ‖2 +α|S|+ β|A| (4.22)

where β adjusts the regulation of the codebook features in A. This approach ensures large codebook features
are penalized encouraging sparse features similar as for regulation of s, where the degree of regulation is
controlled by β. As for regulation of the sources, this approach sets a lower bound of the cost (4.22). Again this
means a regulation factor which is too high may prohibit the features from learning or adapting to an underlying
structure of the data by enforcing a hard restriction on the features (Bias/Variance tradeoff). Adding regulation
of A to the cost function corresponds to including prior information of the codebook and can also derived from
the negative log of the Laplace distribution as given in (4.11) for the sources. With now 2 different independent
regulations care must be taken not to enforce a high level of regulation simultaneously as this may lead to a
high lower-bound of the cost-function resulting in poor learning.

With these two choices of non-linear mapping functions (4.16) and (4.17), we can formulate the additive
update equations from the cost function in (4.22) with the 1-norm sparsity terms through the same steps as for
regular NMF to obtain (4.20), written here for convenience

Sr,n ← Sr,n −Δ
∂ELS

∂Sr,n
= Sr,n + η

[
1
σ2

(
(AT X)r,n − (AT Af(S))r,n

)
f ′(S)r,n − α sign(S)r,n

]
(4.23)

Am,r ← Am,r −Δ
∂ELS

∂Am,r
= Am,r + ζ

[
1
σ2

(
(Xf(S)T )m,r − (Af(S)f(S)T )m,r

)
− β sign(A)m,r

]
(4.24)

where f ′(S) is the derivate or gradient of the non-linear mapping function. For f(s) given in (4.16) the gradient
is

f ′(s) =
∂

∂s

[
exp(s)

1 + exp(s)

]
=

1
1 + exp(s)

· exp(s)− exp(s)(
1 + exp(s)

)2 · exp(s) =
exp(s)

1 + exp(s)
−

(
exp(s)

1 + exp(s)

)2

(4.25)

= f(s)− f2(s) (4.26)

and for f(s) given in (4.17) the gradient f ′(s) = 1− tanh2 = 1− f(s)2. As the decomposition is unconstrained
there is no need to adopt multiplicative update rules. This means the features in A (i.e. column vectors)
can now hold negative elements as well leading to an increased modelling flexibility. The convergence of the
cost-function to at least a local minimum is further ensured provided that the steps taken in both A- and S-
space remain sufficiently small. To control the convergence rate both stepsize parameters η and ζ are adjusted
dynamically during iterations similar as for regular NMF. The threshold b is further maintained by only updating
the d first dimensions of the sources s in (4.23), refer to appendix B.3 for the MATLAB code. Since the non-linear
mapping function f(s) has dynamic range of [0;1], scaling during iterations can be omitted.

4.3.3 The Classifier Network

To infer the weight matrix W we conduct supervised learning using a C dimensional binary target vector
t = {tc}Cc=1, where tc = 1 if the codevector s belong to the c’th class, e.g. for c = 3, we get t = [ 0 0 1 0 . . . 0 ].

Initially we could learn W by optimizing a cost function based on the squared error expressed as Esq =
1
2

∑N
n=1

∑C
c=1(y

(n)
c −t

(n)
c )2, where the superscript denotes the n’th sample. This type of error function is typically
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based on the Gaussian noise hypothesis (refer to appendix A.6) as we assumed for the generative model. Since
the targets tc are of discrete value in our in classification problem this error function is not appropriate. This
is also evident when training classifying neural networks, where the squared-error function will give almost
equal penalty for different degrees of misclassification, due to the saturating effect of the non-linearity of the
activation function [4].

Instead we seek to maximize the likelihood of class label tc being generated from classifier output yc, i.e. on
vector form p(t|y) expressed as

p(t|y) =
C∏

c=1

ytc
c (4.27)

We then define the cross-entropy cost-function EEN as the negative log-likelihood of (4.27) for all samples, i.e.

EEN = −
N∑

n=1

ln p(t|y) = −
N∑

n=1

C∑
c=1

t(n)
c ln y(n)

c (4.28)

This cost function has the appealing property of penalizing large misclassifications harder and is thus appropri-
ate to use in training a classifying network. An additional regulation term based on the L1-norm is augmented
to the cost function as a adjustable tool to control potential overfit. This corresponds to including prior infor-
mation of the weights and is again derived from the negative log of the Laplace distribution as given in (4.11)
for the sources. Thus to obtain the final expression for the cost function we insert the softmax function from
(4.13) into (4.28) and get

EEN = −
N∑

n=1

[
C∑

c=1

t(n)
c wcf(sn)−

C∑
c=1

t(n)
c ln

C∑
c′=1

exp
(
wc′f(sn)

)]
+ γ|W| (4.29)

EEN = −
N∑

n=1

[
C∑

c=1

t(n)
c wcf(sn)− ln

C∑
c′=1

exp
(
wc′f(sn)

)]
+ γ|W| (4.30)

where γ is used to adjust to degree of regulation. By regulation we encourage smaller weights at the linear
region of the softmax function and thereby achieve more linear discriminants leading to less complex modelling.
With an appropriate regulation this approach can help prevent model overfitting, but choosing a regulation too
strong may result in a trained model suffering from a bias. This will also be evident in later simulations.

To find the optimal weight matrix W we minimize the error by gradient descent and express the update of the
individual row vectors wc from the cost function (4.30)

wc ← wc −Δ
∂EEN

∂wc
= wc + η

[
N∑

n=1

(
t(n)
c f(sn)T − exp(wcf(sn))∑C

c′=1 exp(wc′f(sn))
f(sn)T

)
− γ sign(wc)

]
(4.31)

= wc + η

[
N∑

n=1

(
t(n)
c f(sn)T − y(n)

c f(sn)T

)
− γ sign(wc)

]
(4.32)

where the target tc in the first term inside the summation of the gradient ensures this term is only applied for
the true class c. All other classes are updated with a weighted source vector f(s).

With the introduction of the classifying function to the structure of the network the optimization of the non-
linear codevectors S then also become dependent on the parameters of the classifier, W and not only the
codebook matrix A. This means the optimization equations for the non-negative constraint in (4.20) and the
unconstrained in (4.23) must be updated to include dependency to the weight matrix W.

This is achieved by defining a new complete cost function derived as the negative log of the joint distribution
p(x, s, c) derived from (4.14) omitting parameter dependencies. Hence from (4.22) and (4.30) the total cost
function can be expressed as
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E = ELS + EEN (4.33)

E =
1

2σ2
‖ X−AS ‖2 +α|S|+ β|A| −

N∑
n=1

[
C∑

c=1

t(n)
c wcf(sn)− ln

C∑
c′=1

exp
(
wc′f(sn)

)]
+ γ|W| (4.34)

Introducing the classifier to the network means the sources s must now also hold classifying information aside
from reconstruction. The variance σ2 can be seen as a balance parameter used to regulate the influence of ELS

and EEN or the weight of class. or reconstruction information in the sources. For large σ2 the classification
cost is given higher influence risking overfit and for small σ2 the reconstruction cost is favored risking leaving
no influence to classification. A tradeoff must therefore be found as an optimal regulation. The two reg. terms
α and β are also affected by the balance parameter σ2, but can easily be compensated if necessary as they are
linear dependent.

The update equation for the codevectors S with softmax can now be found by deriving the gradient of (4.30)
expressed as

∂EEN

∂Sr,n
= −

(∑
c

t(n)
c wc

)T

r
f ′(S)r,n +

(∑
c

exp
(
wcf(sn)

)∑
c′ exp

(
wc′f(sn)

)wc

)T

r

f ′(S)r,n (4.35)

= −
(∑

c

t(n)
c wc

)T

r
f ′(S)r,n +

(∑
c

y(n)
c wc

)T

r
f ′(S)r,n (4.36)

=
(∑

c

(
y(n)

c − t(n)
c

)
wc

)T

r
f ′(S)r,n (4.37)

where r denotes the index for the elementwise multiplications. This shows how the gradient becomes zero
when the target tc matches the softmax output yc, as expected. Based on our derivation of the update of s
earlier in (4.23), we can express the update equation for optimizing the unconstrained sources as

Sr,n ← Sr,n −Δ
∂E

∂Sr,n
= Sr,n + ηr,n

[
1
σ2

(
(AT X)r,n − (AT Af(S))r,n

)
f ′(S)r,n − α sign(S)r,n

+
(∑

c

(
t(n)
c − y(n)

c

)
wc

)T

r
f ′(S)r,n

]
(4.38)

This equation and (4.32) form the update rules for unconstrained optimization of the sources s with a softmax
classifier. For the non-negative constraint on the sources we derive an update equation by setting ηr,n =

Sr,n

1/σ2·(AT Af(S))r,nf ′(S)r,n+α+(
∑

c y
(n)
c wc)rf ′(S)r,n

and rewrite the update of Sr,n to

Sr,n ← Sr,n

1/σ2 · (AT X)r,n +
(∑

c t
(n)
c wc

)
r

1/σ2 · (AT Af(S))r,n +
(∑

c y
(n)
c wc

)
r
+ α/f ′(S)r,n

(4.39)

From both (4.38) and (4.39) we see how the balance parameter σ2 regulate the influence of the reconstruction
and classification gradient during the update of s. Eventhough the update equation (4.39) is strictly multi-
plicative, we can only ensure a non-negative update provided the elements in the codebook matrix A and the
weight matrix W are all non-negative. For the features in A we employ similar multiplicative update as given
in (4.21), but for the weights in W non-negativity cannot be guaranteed from the additive updates in (4.32).
We therefore also constrain the weights to be non-negative and derive a multiplicative update of the rows in
W by setting ηr = (wc)r(∑

N
n=1 y

(n)
c f(sn)T

)
r,n

+γ
and insert into (4.32)

wc,r ← wc,r

(∑N
n=1 t

(n)
c f(sn)T

)
r(∑N

n=1 y
(n)
c f(sn)T + γ

)
r

(4.40)
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where γ in this case is a d + 1 dimensional vector. The nominator shows how only the true-class samples
contributes to the update of W enforced by the binary tc. In addition it is also evident to see how gradient
become zero when the output yc equals the desired target tc assuming no regulation γ = 0. This expression
and (4.39) constitute the update rules for the classifying network for non-negative constrained optimization.

Augmenting the classifier has given a new set of update rules for A, S and W, which form an iterative co-
ordinate descent "EM"-type algorithm comparable with regular NMF. For the multiplicative update rules the
variables must all remain non-negative during the update to uphold the non-negativity constraint and the
convergence properties are still applicable as for regular NMF, refer to [17].

In the practical implementation a step-size parameter is introduced as before to control the convergence speed.
The threshold b is further maintained by only updating the d first dimensions of the sources s in (4.38) and
(4.39), refer to appendix B.3 for the MATLAB code.

Network Modules

In building the network we have introduced different decompositions in sections 4.3.1 & 4.3.2 with and without
regulation and a parallel classifying network. To summarize we can consider each layer as a module parame-
terized by Θ = {d, α, β, γ, σ2} either individually or as a common set. This leaves a vast set of combinations
when forming the building blocks or modules for the multilayered model. The general architecture of our deep
net model can be visualized as in figure 4.8.
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Input :          X

                     Layer 1 :                              S1

.   .   .   .   .   .x1

.

.

.

s0

A1

s1 sd

x2 xM

f(S1)
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                     Layer L :                            SL

.   .   .   .   .   .

Classifer

. . . .
c0 c1 c9

WL

Classifer

. . . .
c0 c1 c9

f(SL)

Figure 4.8: Architecture of the multilayered deep network model with L layers.

Some of the properties of the modules are however mutually exclusive. From the non-negative update rules in
(4.21) we see that enforcing the non-negative constraint on for instance A can only be upheld if the non-linear
sources f(S) are also non-negative and vice versa. We have also argued the innecessesity of regulating for
sparse codebook features in A for the non-negative constraint. Hence using the non-negative constraint means
all parameters must share the same constraint in our case. In contrast the unconstrained decomposition are
not restricted to a specific dynamic range of its parameters, as can be seen from the update rules (4.24), (4.32)
and (4.38).

These approaches are assuming a single training session, where the A, S and W are optimized in one round.
As mentioned this sets a limitation for the non-negative approach, where in particular the classification weight
matrix W must remain non-negative. By training the model in two sessions we can achieve unconstrained
weights W leading to potentially improved classification. In the first round the network is trained with the
non-negativity constraint without the classification part attached meaning classification information is not taken
into account in training the sources S. In a second step the classification weights W are optimized supervised
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and unconstrained with the non-negative sources S from the first session. This dual session approach hence
leads to non-negative sources S and unconstrained weights W.

To summarize table 4.2 lists the set of module combinations.

Session A s W f(s) α β γ σ2

Case 1 Non-Neg. Non-Neg. Non-Neg. nn→ nn � � � �
Case 2 Uncon. Uncon. Uncon. un→ un � � � �
Case 3 Non-Neg. Uncon. Non-Neg. un→ nn � � � �
Case 4 (dual) Non-Neg. Non-neg Uncon nn→ nn � � � �

Table 4.2: Module combinations.

4.4 Classification of data

With our trained classifier we can classify new data x by evaluating the posterior p(c|x) for each class c and
choose the largest. Thus to find p(c|x) we can expand

p(c|x) =
p(x, c)∑

c p(x, c)p(c)
(4.41)

where the denominator can be neglected for classification tasks as it is class independent. As discussed earlier
our simplified deep network suffered from the ability to sample from the posterior p(sl+1|sl) as we do not have
complementary priors and thus data cannot be classified by simple propagation up through the layers. As the
joint distribution p(x, c) as given in (4.14) is difficult to compute due to the marginalization over the sources,
we approximate p(x, c) by estimating an optimal source sx from the likelihood p(x|s) as only this depends on
the data x in (4.14), hence

sx = argmax
s

p(x|s)p(s) (4.42)

The joint distribution can now be written as p(x, c) ≈ p(x|sx)p(c|sx)p(sx) and thus using sx for classification
corresponds to evaluating the conditional posterior p(c|x, sx), which can be expanded as

p(c|x, sx) =
p(x, sx, c)
p(x, sx)

=
p(x|sx)p(c|sx)p(sx)∑
c p(x|sx)p(c|sx)p(sx)

=
p(x|sx)p(c|sx)p(sx)

p(x|sx)p(sx)
(4.43)

= p(c|sx) (4.44)

Hence the class c is independent of x once we have estimated sx as thus leads to a new representation of x
used for evaluating the class probability p(c|sx).

The practical approach of classifying an observed datasample x is to infer the corresponding source sx with
a constant codebook matrix A. Initially we could apply the pseudo-inverse of A to obtain sx, i.e. sx =
(AT A)−1AT x derived from the least-squares cost function in (4.22). However this is only applicable for the
strictly linear case where f(s) = s and hence due to the non-linearity of f(s) this approach is not feasible.

Instead we infer sx by initiating an iterative learning process using either (4.21) or (4.23). From the correspond-
ing source sx the class can easily be inferred by propagating through the classifier using (4.13) and thereby
obtain and evaluate p(c|sx). For classification the same MATLAB code used for learning the model parameters
can be used and can be found in appendix B.3.

4.5 Generation of data

In generating new class-conditional data x with the same statistical properties as the training examples the
objective is to generate valid sample x with the correct class label by extracting samples from the posterior
p(x|c), which can be expanded into
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p(x|c) =
p(x, c)∑

x p(c|x)p(x)
(4.45)

where the denominator can be neglected for generation tasks as it is independent of x.

In deep belief net by Hinton et al. the top level associative memory modelling an infinite directed model with
tied weights is used to generate top-level sources by alternating Gibbs sampling while clamping a class label.
This means the sources are extracted from a relatively complex prior distribution p(hL,hL−1, c) in contrast to
our crude approximation using the Laplace distribution for our priors p(s) given in (4.11).

As our model requires computing the inconvenient p(x, c) we approximate the distribution by estimating an
optimal source sc from the conditional probability p(s, c)

sc = argmax
s

p(c|s)p(s) (4.46)

The joint distribution can now be expressed as p(x, c) ≈ p(x|sc)p(c|sc)p(sc) and thus using sc for generation
corresponds to evaluating the conditional posterior p(x|sx, c), which can be expanded into

p(x|sc, c) =
p(x, sc, c)
p(sc), c

=
p(x|sc)p(c|sc)p(sc)∑
x p(x|sc)p(c|sc)p(sc)

=
p(x|sc)p(c|sc)p(sc)

p(x|sc)p(sc)
(4.47)

= p(x|sc) (4.48)

Hence x is independent of c once we have estimated sc. We can now extract new data x from the conditional
distribution p(x|sc) and thus to extract sources from p(c, s) we derive a MAP estimate by minimizing a cost
function defined as the negative log of p(c, s) derived from (4.13) and (4.11), i.e.

EGEN = − ln p(c, s) = − ln p(c|s)− ln p(s) (4.49)

= −tcwcf(s) + ln
C∑

c′=1

exp
(
wc′f(s)

)− ln
α

2
+ α|s| (4.50)

where t is the binary target vector defined earlier holding the desired class label to extract from. This cost
function is basically the same derivation as in (4.30). Hence to generate labeled sources we minimize the error
by gradient descent and express the update using use the same calculations from (4.37) and get

sr ← sr −Δ
∂EGEN

∂sr
= sr − ηr

[(∑
c

(
yc − tc

)
wc

)T

r
f ′(s)r + α sign(s)r

]
(4.51)

This also shows how the class error yc − tc is propagated back through the classification network by applying
the weights and the 1st order derivative of the non-linear mapping function. The convergence rate is again
controlled by dynamically adjusting the stepsize η during iterations as for regular NMF. In order to avoid
generating the same digit for the same class we initialize the sources randomly and use a stop criteria based on
a threshold of p(c|s), refer to the MATLAB code in appendix B.3.

One of the potential deficits of this approach in generating new data is that it is mainly based on the crude
approximation of modelling the sources with a Laplace distribution in (4.11). Initially this means the quality of
the data may be very poor if this distribution is far from the true. In addition if the respective model to generate
from is optimal for no regulation of the sources, i.e. α = 0 then p(s) can be neglected and our generation is
solely based on the classification weights W. This will be more clear in our simulations. For the purpose of
generation data the deep belief network of Hinton et al. has a great advantage in this respect due to its top-level
associative memory as discussed earlier.
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5.1 The MNIST Dataset

5. DEEP NETWORK SIMULATIONS

In section 4 we introduced the deep network model using on the decomposition x = Af(s) as our non-linear
generative model. Based on this decomposition we aim to extract sources s, which holds sufficient information
to generate and classify digits from the MNIST dataset. In this section we will present different model architec-
tures and analyze their corresponding performance in terms of generation and classification. We will start the
analysis with a single layered model to evaluate the impact and significance of the model parameters.

The network model types described in table 4.2 prove the vast combinations of building a model, but due to a
limited timeframe and the unfortunate very time consuming simulations (up to 3 days pr. simulation), we limit
our analysis to only one model type. The main analysis will therefore be based on the unconstrained model
mainly due to its flexibility in modelling using all parameters and also for its potential of extracting features
resembling receptive fields. A smaller analysis on the non-negative module will however also be given.

The MATLAB code used for the simulations can be found in appendix B.3.

5.1 The MNIST Dataset

Our simulations for the deep network model are still being based on the MNIST dataset of handwritten digits
as presented in section 3.1. In order to evaluate the model performance in classification problems we include
all digit classes from the dataset. For the full dataset of 60000 samples, this leads to very large amounts of data
to analyze for the different layers in the model (∼ 250Mb for d = 500 features pr. layer) and are very time
consuming, we conduct our analysis on a smaller subset with only 10000 samples (1000 from each class) in
both the training and test set. The same pre- and post-processing described in section 3.1 is still applicable for
this analysis.

5.2 Single Layer Network

Before building the hierarchal architecture of our model, we give an analysis of the influence and impact of the
model parameters Θ = {d, α, β, γ, σ2} and evaluate the output and performance of a single layer as depicted
in figure 4.8 in terms of classification of digits. Afterwards a small analysis of the models generative properties
will be conducted.

To start the analysis we train a single layer network with d = 50 features with parameters Θ = {50, 0, 0, 0, 1} and
evaluate the extracted features based on both the non-negative (NN) and unconstrained (UN) decompositions
presented in section 4.3.1 and 4.3.2. For stop criteria of the learning, we use ΔE = 1e− 5 and a max. of 1000
iterations. This set will be used henceforth unless otherwise noted. The decrease of the cost function both ELS

and EEN can be seen in figure 5.1 for NN and UN features.
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Figure 5.1: Convergence of training cost both reconstruction and classification for NN (left) & UN (right) features
with parameters Θ = {50, 0, 0, 0, 1}.
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5.2 Single Layer Network

The sudden increase and small fluctuations of the classification test error is caused by the update of the sources s
favoring the reconstruction error in this case. This is the battle between favoring either the reconstruction error
(4.22) or the classification error (4.30). The parameter σ2 serves exactly to adjust the balance between these
updates and thus control the share of class. vs. recon. information in the sources. In addition the converged
errors show how the UN model has achieved lower training error than the NN model for both classification and
reconstruction. This indicates that the non-negative constraint model suffers from a bias as it prohibits learning
the features properly or that the UN model has overfitted to the training data. The corresponding features are
depicted in figures 5.2 and 5.3.

Figure 5.2: Extracted features for NN for d = 50
features without regulation, where the threshold
patch is in the lowest left corner. Parameters Θ =
{50, 0, 0, 0, 1}.

Figure 5.3: Extracted features for UN for d = 50
features without regulation, where the threshold
patch is in the lowest left corner. Parameters Θ =
{50, 0, 0, 0, 1}.

The features for NN model have proven to be very sparse and localized and coincide with the prior definition
of cognitive components and can therefore be considered as such. The threshold vector b in the lowest left
corner of figure 5.2 is the zero vector (all elements are zero). As the NN model cannot subtract elements any
non-zero threshold vector b must be part of all training digits. Hence a zero threshold vector indicates there
are no average common pixels for the digits in the training set.

In contrast the features extracted by the UN model can be characterized as non-local coarse segments with
small indications of Gabor-like structures and could be said to resemble hypercomplex cells (eventhough their
definition is not quite clear), but can hardly be considered cognitive. In addition the threshold vector b has
high contrast energy with a faint structure and is non-zero due to the ability to eliminate or subtract unwanted
elements. Despite the features may not be very cognitive the inhibitory effect induced in the UN model is
essential as seen from the error rates in figure 5.1 since it allows greater flexibility in modelling cognitive data.

5.2.1 Unconstrained Model

A detailed analysis of the impact of the regulations is made for the unconstrained model.

Size of hidden layer, d

The size of the network d obviously has a major influence on the performance wrt. classification and recon-
struction. To evaluate the impact the codebook features in A are shown in figure 5.4 for increasing network
sizes (only a subset shown). The figure shows how the spatial frequency of the features is proportional with
the network size as they gradually resemble noise without any clear structure.

A set of corresponding reconstructed training digits are shown in figure 5.5 illustrating the increasing quality
of the generated data. In addition the grey background color becomes gradually whiter indicating that the neg-
ative elements in the generated digits fade out for larger networks. Considering the very noisy non-structural
features for d = 300 (last row in figure 5.4) it is amazing how these features can in fact be used to generate
digits of such quality as the last row in figure 5.5 depicts.

The gradually improving reconstruction of digits can also be seen from the corresponding decaying reconstruc-
tion testerror shown left in figure 5.6 given by er = 1

2N ‖ X − A1S1 ‖2. The decrease indicates the model
suffers from a bias wrt. reconstruction.

The classification testerror is depicted in the middle illustration of figure 5.6 clearly revealing an optimal net-
work size around d = 50. Larger networks overfit leading to the degraded testerror, which is also evident from
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5.2 Single Layer Network

Figure 5.4: Extracted features for network sizes
d = {20, 30, 50, 60, 80, 100, 200, 300} (from top
row) with parameters Θ = {d, 0, 0, 0, 1}.

Figure 5.5: Reconstructed digits for different net-
work sizes d = {20, 30, 50, 60, 80, 100, 200, 300}
(from top row) with parameters Θ = {d, 0, 0, 0, 1}.
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Figure 5.6: Performance for different sizes of hidden layers d with parameters Θ = {d, 0, 0, 0, 1}. Left: Reconstruc-
tion error (test). Mid: Class. error (test). Right: Class. error (train).

the class. training error given in eq. (4.30) shown right in the figure, where the network adapts increasingly to
the trainingset.

A subset of the corresponding misclassified digits for d = 50 hidden units are illustrated in figure 5.7. It can
be seen how most classes hold misclassified digits, which are similar in structure to the true class. This is
particularly evident for class 0, 1, 4 and 9, where for instance most digits are slim and narrow for class 1 and
round and plump for class 0.

Figure 5.7: Subset of misclassified digits from model with parameters Θ = {50, 0, 0, 0, 1}. Each row represents
misclassified digits from each class starting from top left row of class zero.

To summarize this means the sources s fail to capture the complete generative structure of the trainingset, but
have simultaneously adapted too strong to the classifying information in the trainingset.

Regulation of sources (α)

The overfit of the classification error can initially be controlled by regulating the sources s directly. By regulation
we encourage smaller sources located in the linear region around origo at f(s) (for the UN model) as shown in
figure 5.8.

In addition regulation also encourage more sparse sources as shown in figure 5.9.

Page 60



5.2 Single Layer Network

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

s, α = 0

f(
s)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

s, α = 2

f(
s)

Figure 5.8: Mapping of sources into f(s) for both no regulation (left) and strong regulation (right) with parameters
Θ = {500, α, 0, 0, 1}.
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Figure 5.9: The mean sparsity index of A & S (left) and examples of corresponding features (top) and sources
(bottom) with parameters Θ = {500, α, 0, 0, 1} for no and strong regulation.

To achieve a more quantitative expression of the sparsity, we define a mean sparsity index (MSI) as mean of the
amount of elements within a vector below a predefined threshold. The left figure depicts the mean sparse index
with a threshold of 5% for both the codebook features A and the sources S. Initially it reveals how the sources
become more sparse for stronger regulation, but since the mean sparse index is based on the data directly (i.e.
not pre-normalized) low-energy sources will raise the MSI. Evaluating the actual elements of s (bottom figures)
we see that the sources are more small than sparse. In addition the left illustration also show how the sparsity
of codebook features A is inverse proportional to the sources. Achieving the smaller sources means the energy
of the codebook features A correspondingly increases as a compensation to maintain low reconstruction error
as can be seen in the top figures. This leads to more elements in A above the sparsity threshold leading to the
decrease in sparsity.

Figure 5.10 illustrates the performance for different degrees of regulation for a large network with d = 500
hidden variables showing both worse classification and reconstruction errors.
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Figure 5.10: Performance for different regulations of α with parameters Θ = {500, α, 0, 0, 1}. Left: Reconstruction
error (test). Mid: Class. error (test). Right: Class. error (train).

By regulating, the sources become poorly trained failing to capture the underlying generative structure in the
trainingset, which forms sources not holding sufficient generative information (left figure). This leads to worse
classification simply due to poorly trained sources and thus regulation of the sources does not attenuate the
overfit of class. information in s.

Balance Parameter σ2

The tradeoff between optimizing the sources s for either classification or reconstruction can be regulated by
the balance parameter σ2 in eq. (4.34). To illustrate figure 5.11 shows the effect of regulating σ2 for a small
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network with d = 50 features.
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Figure 5.11: Performance for different values of σ2 = {1e − 6, . . . , 10} with parameters Θ = {50, 0, 0, 0, σ2}. Left:
Reconstruction error (test). Mid: Class. error (test). Right: Class. error (train).

Initially it is evident to see that the reconstruction error in the left figure is almost unaffected for different
balances of σ2. More importantly the middle and right figures clearly reveal an overfit of the sources s to
classification information for higher values of σ2. This can be seen from the high test-errors and correspondingly
low trainingerror, where the model has adapted to closely to the training set.

For lower balances of σ2 the classification test error is relatively stable. However for extremely low σ2, where
the sources are not optimized with any classification information we expect the test error to increase a bit.
A preliminary simulation in training sources without the classification network and afterwards optimizing the
class. weights W revealed a testerror of 16.7%, which is a modest increase. This proves that including super-
vised classification information when training the sources is vital for a good class. performance. This important
relation has also been discovered by Bengio et. al. [2].

In addition the middle figure also indicates a threshold at appr. σ2 = 1e−2, where the classification test error is
sufficiently regulated to avoid overfit. As always larger networks has a greater propensity to overfit due to the
increased modelling flexibility and thus need to be regulated harder. For the balance parameter σ2 the same
regulative impact can be identified for such larger network of d = 200 as illustrated in figure 5.12.
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Figure 5.12: Performance for different values of σ2 with parameters Θ = {200, 0, 0, 0, σ2}. Left: Reconstruction
error (test). Mid: Class. error (test). Right: Class. error (train).

The same classification overfitting can be seen, where the threshold has decreased to appr. σ2 = 1e− 3 proving
the need for stronger regulation for larger networks.

For a more clear analysis of how the classification information is stored in the sources we can analyze the
weights in W and the sources s wrt. emphasized elements. For most classes the weights are relatively flat, i.e.
no distinct elements (not shown). However in figure 5.13 the most prevalent classes are illustrated.

Initially the bottom left figure depicts the source elements for all 1 digits. This shows a few distinct elements,
which are characteristic of the 1 digits, but since these elements may be important for generation, we cannot
derive any classifying information. The top left figure illustrates the corresponding row vector in w1 for class
1 showing how certain elements (e.g. 24 and 34) are emphasized indicating their influence for classification.
In particular element 34, which also has a relatively strong peak in the corresponding sources indicates this
elements represents class. information for the 1 digit.

Similar illustrations are depicted for class 2 digits in the right figures. Here a few elements of the classifica-
tion weights are emphasized and in particular element 26 also having a strong source peak again revealing
characterizing classifying information.
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Figure 5.13: Weights in W and corresponding elements in s for digit 1 (left) and digit 2 (right) with parameters
Θ = {50, 0, 0, 0, 1}.
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Figure 5.14: Weights in W and corresponding elements in s for digit 1 (left) and digit 6 (right) with parameters
Θ = {50, 0, 0, 0, 1e − 3}.

Using the balance parameter σ2 to regulate the classification of s a similar analysis can be made as depicted in
figure 5.14 for digit 1 and 6. From these illustrations the same classifying elements can be found, but any clear
evidence for the improved classification test error cannot be identified as a result of the regulation.

The classification weights can also be viewed as features by propagating the rows of W back through the
generative network, i.e. xw = A ·WT. The corresponding weight features for σ2 = {1, 1e − 3} shown in
figure 5.15 can be seen as prototype features used for classification. In comparing the two regulations a small
improvement can be seen for most digits and in particular for digit 8.

Figure 5.15: Row vectors of W propagated as features for σ2 = 1 (left) and σ2 = 1e − 3 (right)

The regulation dependency for larger network is illustrated in figure 5.16. The middle illustration clearly shows
how the optimal network size for this set of parameters Θ = {d, 0, 0, 0, 1e− 5} has increased to around d = 100
compared to σ2 = 1 as in figure 5.6.

We devise two immediate strategies for selecting network sizes in term of optimal class. performance. Choosing
the network d = 100 leads to an initial optimal size expecting little or zero regulation of A or W. Alternatively
a large suboptimal network, e.g. d = 500, requirering stronger regulation may have the potential to outperform
the smaller network and may encourage more sparse features. In the further analysis we will try to make an
analysis of this problem by comparing both strategies. Hence for the small layer we choose d = 100 hidden
units and σ2 = 1e− 3 and for the large layer we choose d = 500 hidden units and σ2 = 1e− 5.

Regulation of classification weights (γ)

Regulation with σ2 can only constrain the classification information in the sources s to a certain optimal level
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Figure 5.16: Performance for different sizes of hidden layers d with parameters Θ = {d, 0, 0, 0, 1e − 5}. Left:
Reconstruction error (test). Mid: Class. error (test). Right: Class. error (train).

holding max. classification information. Further optimization can be achieved by regulating the classification
weight matrix W. The performance of the network for different regulations is illustrated in figure 5.17 initially
showing how the reconstruction error is unaffected as expected.
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Figure 5.17: Performance for different regulations of the weight W with parameters Θ = {100, 0, 0, γ, 1e− 3}. Left:
Reconstruction error (test). Mid: Class. error (test). Right: Class. error (train).

More importantly the middle figure reveals an overfit for small regulations and a bias for stronger regulations
as the discriminants become more linear. This can also be seen from the right figure showing a smaller training
error for light regulations. Conversely the higher trainingerror for stronger regulations fails to capture the
underlying structure of the training data and thus induces a bias. An optimal regulation can be identified at
γ = 0.2.

Figure 5.18: Classification weights for γ = 0 (left) and γ = 0.2 (right) with parameters Θ = {100, 0, 0, γ, 1e − 3}.

From figure 5.18 showing the corresponding weights W as features for zero and optimal regulation no clear
difference can be seen and considering the very low classification improvement, this is also expected.
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Figure 5.19: Performance for different regulations of the class. weights W with parameters Θ = {500, 0, 0, γ, 1e−5}.
Left: Reconstruction error (test). Mid: Class. error (test). Right: Class. error (train).

Similar effects can be seen for the larger network d = 500 in figure 5.19. The class. test error (middle figure)
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reveals an optimal regulation at γ = 3 showing how larger networks require stronger regulation as expected.
Despite the regulation this larger network still has inferior class. performance compared to the smaller network
d = 100.

Figure 5.20: Classification weights for γ = 0 (left) and γ = 0.2 (right) with parameters Θ = {500, 0, 0, γ, 1e − 5}.

From figure 5.18 showing the corresponding weights W as features for zero and optimal regulation only a
slight difference can be spotted.
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Figure 5.21: Mean of max p(c|s) for all samples with parameters Θ = {100, 0, 0, γ, 1e − 5} (left) and Θ =
{500, 0, 0, γ, 1e − 5} (right)

A different way to evaluate the effect of regulating the weights in W is to analyze how much the model classifies
the different classes in terms of the softmax output probability p(c|s). Figure 5.21 shows how the mean class.
probability decreased as expected as the regulation increases leading to more linear discriminants.

Regulation of generative weights (β)

As a final parameter of our model any potential overfit of the codebook features A can be controlled by the
regulation parameter β. Regulation of A can in addition also provide more sparse features compared to those
in figure 5.3.

To illustrate the effect of regulation each row in figure 5.22 show the extracted features for d = 100 latent
variables and for different degrees of regulations of β.

Figure 5.22: Extracted features with parameters Θ = {100, 0, β, 0, 1e − 3} for regulation of β =
{0, 0.2, 0.7, 1, 2, 5, 10, 20, 50, 100} (starting top left row).

It is clear to see how the unconstrained features become more sparse for stronger degrees of regulation. For
the strongest regulation shown with β = 100 the features does not quite resemble localized oriented filters as
in the simple cells of V1. The exhibitory and inhibitory parts can still be identified, but are not localized. With
a threshold of 10% the mean SI is shown in the right figure of 5.23 for both A and S and in conjunction with
the features shown above the mean SI reveals similarly more sparse features for stronger regulation through β
as expected.

The mean SI for S in the left figure shows how the sources become less sparse for stronger regulation. As the
codebook features become more sparse and thus smaller in energy as shown top in figure 5.23 more elements
in s are requires for proper representation of the observed data as seen at the bottom of the figure.

Eventhough we have achieved sparse unconstrained features with the regulation the final evaluation must be
conducted on the testerror figures. The corresponding test-errors shown in figure 5.24 reveal how the regulation
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Figure 5.23: The mean sparsity index of A & S (left) and examples of corresponding features (top) and sources
(bottom) with parameters Θ = {100, 0, β, 0, 1e − 3} for no and strong regulation of β.

of the features has resulted in degraded classification performance. In addition the reconstruction error has also
increased indicating that the sparse features does not give a better representation. As the sources become more
sparse for stronger regulation of A we also induce a bias, which results in degraded representation in the
sources leading to worse classification as can be seen right in figure 5.24.

0 0.5 1 1.5 2

2.26

2.28

2.3

2.32

R
ec

. e
rr

or

β
0 0.5 1 1.5 2

0.092

0.0925

0.093

0.0935

0.094

0.0945

0.095
C

la
ss

. e
rr

or

β

Figure 5.24: Test errors for different degrees of regulation of β with parameters Θ = {100, 0, β, 0, 1e − 3}.

For the larger network of d = 500 hidden variables the corresponding codebook features illustrated left in
figure 5.25 clear shows very noisy patches indicating too strong regulation. Damping the influence of the
balance parameter to σ2 = 1e− 3 results in similar features as shown right in figure 5.25.

Figure 5.25: Extracted features for regulation of β = {10, 20, 30} (starting top left row) with parameters Θ =
{500, 0, β, 0, 1e − 5} (left) and Θ = {500, 0, β, 0, 1e − 3} (right).

From the cost function given in eq. (4.22) we see how the regulations by β and σ2 are inverse proportional
and linear. Hence any regulation using σ2 and β during update can in principle be downscaled by adjusting
an appropriate stepsize η. Thus the noisy results achieved in figure 5.25 could indicate a MATLAB instability,
but further investigations are required to pinpoint the cause. Removing the regulation induced by the balance
parameter to σ2 = 1 we obtain features similar to those for d = 100 shown in figure 5.26.

Figure 5.26: Extracted features with parameters Θ = {500, 0, β, 0, 1} for regulation of β =
{10, 20, 50, 70, 100, 120, 150, 200} (starting top left row).
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It is clear to see how the unconstrained features become more sparse for stronger degrees of regulation. With a
threshold of 1% and 10% the mean SI is shown in figure 5.27 for both A and S respectively and in conjunction
with the features shown above the mean SI reveals similarly more sparse features for stronger regulation
through β as expected.
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Figure 5.27: The mean sparsity index of A & S (left) and examples of corresponding features (top) and sources
(bottom) with parameters Θ = {500, 0, β, 0, 1} for zero and strong regulation of β.

In addition the mean SI for the sources S in the left figure also become less sparse for stronger regulation as also
seen for the smaller network in figure 5.23. As the energy in the features A decrease the sources compensate
with larger elements and due to the non-linearity of f(s) we get these extremely strong distinct elements.

The corresponding test-errors shown in figure 5.28 reveal an optimum at β = 70, where the class. testerror is
lowest.
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Figure 5.28: Test errors for different degrees of regulation of β with parameters Θ = {500, 0, β, 0, 1}.

The figure also reveals how the improved classification is achieved at the expense of higher reconstruction error,
where stronger regulation leads to worse reconstruction as also seen for the smaller network in figure 5.24.
Despite improved results achieved with σ2 = 1, we conjecture that the larger network with d = 500 hidden units
and sufficient regulation does not have superior classification performance compared to the smaller network
d = 100.

Summary

For the initial layer we have seen how most of the different regulations optimized empirically improved the
classification error rate. The analysis showed how the sources were biased wrt. to reconstruction, but overfitted
wrt. classification. Regulation with the balance parameter σ2 proved efficient to reduce the classification overfit
without affecting the reconstruction error.

We have tested two different strategies for selecting network size and initial simulations indicated an optimal
network size at appr. d = 100 in terms of classification test error requirering little or no regulation. In contrast
large network suffering from overfit showed inferior class. performance despite strong regulation attempts.

Thus for the initial layer a network of d = 100 latent variables and parameters
Θ1 = {d = 100, α = 0, β = 0, γ = 0.2, σ2 = 1e− 3} is identified as optimal and the performance for this model
is given in table below.

To complete the analysis layer 1 the non-linear mapped sources with these parameters are shown in figure 5.29
illustrates how the mapping function induces non-linearity on the sources.
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L1 Model Rec. error Class. error
{100, 0, 0, 0.2, 1e− 3} 2.25 9.2%

Table 5.1: L1 performance.
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Figure 5.29: Mapping of sources onto f(s) with parameters Θ = {100, 0, 0, 0.2, 1e − 3}.

In the case of very small sources we can equate the mapping function f(s) = s and neglecting the softmax
converting function, our classifier can be characterized as linear. Comparing with the official class. result of the
MNIST dataset a linear classifier (1-layer NN) achieves 12% error rate. Our small improvement indicates the
positive effect of the non-linearity as shown in figure 5.29.

Figure 5.30: Subset of misclassified digits from model with parameters Θ = {50, 0, 0, 0.2, 1e − 3}. Each row repre-
sents each class starting from top left row representing digits misclassified of zero.

To evaluate the final performance figure 5.30 illustrates a subset of the misclassified digits for the optimal pa-
rameters of layer 1. It is evident to see how the misclassified digits are similar in structure as the corresponding
class. For class 1 (2nd row left) all digits are slim and narrow as the 1 digit and class 9 (5th row right) include
as few 4 digits, which bear resemble for a 9 digit.

5.2.2 Non-negative Constrained Model

Evaluating the classification error rates the unconstrained model show superior performance compared to the
non-negative model (NN) as also evident from figure 5.1 showing how the unconstrained model achieve lower
training-error for that particular model. This suggests that the non-negative constraint prohibits the model
from learning both the generative features in A and in particular the classification weights in W sufficiently
due to the multiplicative update rules in eq. (4.40) restricting the weights are W to non-negativity.

In figure 5.31 the performance of the NN model is shown for different size of latent variables. It clearly illustrate
how the model is suffering from a bias for both reconstruction and classification and has worse performance in
both measures compared to the UN model (figure 5.6).

A subset of features in A is shown in in each row in figure 5.32 with corresponding reconstruction for the
different classes. Both figures depict features becoming more sparse yielding improved reconstruction for larger
models as expected.

To better evaluate the sparsity of NN model figure 5.33 depicts the mean sparsity index with a threshold on
10%. The figure clearly illustrate how the features become more sparse in alignment with figure 5.32, but also
shows how the sources are proportional in terms of sparsity. As the codebook features become more sparse
and small more patches are required active in the sources to reconstruct the observed data as the non-negative
constrain only allows additive reconstruction.
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Figure 5.31: Test errors for different network sizes for the NN model with parameters Θ = {d, 0, 0, 0, 1}.

Figure 5.32: Features (left) and reconstruction of digits (right) for different NN network sizes d =
{20, 30, 50, 100, 200} (each row respectively) with parameters Θ = {d, 0, 0, 0, 1}.
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Figure 5.33: The mean sparsity index of A & S (left) and examples of corresponding features (top) and sources
(bottom) with parameters Θ = {d, 0, β, 0, 1} for different layer sizes d.

To accommodate for the non-negative constraint on the weights we conduct a dual training session, where
the network features A and sources S are learned strictly unsupervised without the classifier. Afterwards the
classification weights W are trained both non-negative and unconstrained keeping the sources constant.
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Figure 5.34: Dual session training. Left: Reconstruction error for different network sizes. Right: Classification errors
for both NN and UN model. All with parameters Θ = {d, 0, 0, 0, 1}.

The performance shown in figure 5.34 clearly illustrates how the class. and reconstruction performance is de-
graded for the NN model compared to figure 5.31. This highlights the significance of including classification
information in the sources to achieve good classification performance, as mentioned. In addition the uncon-
strained weights W also give improved classification compared to the non-negative constrained, as expected.
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5.2.3 Generation of digits

As efficient classification is based on proper generative representation in the sources s optimizing model pa-
rameters for lowest class. error as opposed to reconstruction energy seems justified. Thus for a model with
good class. performance we expect equivalently good generative properties.

For the small network d = 100 with optimal parameters, where α = 0 figure 5.35 shows generated digits 0 . . . 9
each initialized randomly for different stopping criteria defined as a threshold of the class association p(c|s),
denoted ystop.

Figure 5.35: Generation of digits 0 . . . 9 (each column) for stop criterias ystop = {0.90, 0.98, 0.99, 1e − 4, 1} (each
row) and parameters Θ = {100, 0, 0, 0.2, 1e − 3}. Left: Full dynamic range. Right: Negative pixels truncated.

For the small stop criterias ystop we generate very noisy digits hard to recognize and for increasing ystop we can
see how the quality improves. It is also evident to see how digits 2, 3, 5 and 8 are generated with sufficient
quality to be recognized. In addition the digits are very similar and seemed based on the same prototype. For
ystop = 1 (bottom row) the generator never reach this stopping criteria and thus conducts a full convergence
only stopped by max. iterations of 10000. With ystop = 1 we achieve the best quality of digits and in figure 5.36
5 sessions with ystop = 1 is shown.

Figure 5.36: Generation of digits 0 . . . 9 (each column) for ystop = 1 and different sessions (each row). Bottom row
shows corresponding weights W as features. All with parameters Θ = {100, 0, 0, 0.2, 1e − 3}. Left: Full dynamic
range. Right: Negative pixels truncated.

From the figure it is clear to see how the digits all appear the same, i.e. we achieve the same minimum with very
little variance. In addition this model is without any regulation of the sources α = 0, i.e. no prior information
is given to potentially generate more varying digits. Comparing with the prototype features from W (bottom
row) we see how the generated digits highly resemble these features. As our generation is solely based on
classification information from exactly these weights (eq. (4.51)), this connection is expected. To compare
with a network with lower classification error rate figure 5.37 depicts generated digits for the suboptimal
network d = 100 without any regulation.

The generated digits are clearly not of same quality as figure 5.36 and cannot be compared with the class.
weight features (bottom rows). This suggests that best class. performance also give best generation of digits
and vice versa as the model then has sufficient representation of the data.

5.3 Deep Networks

The whole concept of using a deep network is to learn increasingly more abstract features from layer to layer.
It is therefore essential that the relevant information is preserved up through the layers, e.g. classification or
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Figure 5.37: Generation of digits 0 . . . 9 (each column) for ystop = 1 and different sessions (each row). Bottom row
shows corresponding weights W as features. All with parameters Θ = {100, 0, 0, 0, 1}. Left: Full dynamic range.
Right: Negative pixels truncated.

reconstruction information. If a layer is too narrow or small we risk neglecting important information, which
cannot be recovered in subsequent layers. In contrast if the layer is too wide we might obtain a degree of
redundancy leading to a potential overfit learning the same representation or identity of the previous layer.
This is particularly relevant if not regulation is enforced in subsequent layers.

In contrast a wide layer may provide an overcomplete sparse representation of the data, which can lead to
several potential advantages as argued by Ranzato et. al. [25]. A sparse representation can provide a simple
interpretation of the input by a small number of distinct parts of the cognitive extracted features. Using high
dimensional overcomplete features can in addition lead to increased likelihood of separating data categories or
classification.

From the initial layer with d1 = 100 latent variables we build a shallow deep net by adding an extra layer
including the classifier such that the network structure becomes 784-100-d2-10, where the final layer is the
classifying network. The impact of the size of layer 2 is illustrated in figure 5.38 showing the class. overfit for
larger networks evident from the right figure.
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Figure 5.38: Performance for different layer sizes d with parameters Θ2 = {d, 0, 0, 0, 1}. Left: Reconstruction error
(test). Mid: Class. error (test). Right: Class. error (train).

In the left illustration the reconstruction test error is based on propagating the error through the network down
to the observed x, i.e. er = 1

2N ‖ X−A1A2S2 ‖2. For layers over the critical size of d = 100 the figure reveals
how the reconstruction test error falls to a constant indicating an optimal representation of the sources from
layer 1 with no regulation. In addition we see that the class. test error is fact worse than the initial layer with
ec = 9.2%.

From the figure we can identify the small network with d = 50 latent variables as the optimal size and conduct-
ing a similar analysis as for layer 1 for the different parameters of regulation θ = {α, β, σ2, γ} we achieve the
classification performance shown in figure 5.39.

Despite the hard attempt the figures revel how the class. performance has indeed improved settling at ec =
10.4% (reconstruction error er = 7.8%), but not sufficiently to outperform layer 1. Thus adding this additional
layer has not given the class. improvement as hoped for.

The right illustration in figure 5.40 depicts the propagated codebook features in A2 for a network size of d = 50
and the left figure shows the corresponding codebook features A1 for layer 1 for comparison. The features for
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Figure 5.39: Classification test errors for layer 2 for d = 50 hidden units.

layer A2 are still characterized as very noisy and complex, but comparing with A1 a slightly more meaningful
texture can be spotted with smaller spatial frequency and some even with digit resemblance.

Figure 5.40: Codebook features for layer 1 with parameters Θ1 = {100, 0, 0, 0.2, 1e − 3}. (left) and layer 2 with
parameters Θ2 = {50, 0.05, 0.3, 0, 1e − 3}.

To further analyze this network figure 5.41 illustrate the weights for class 0 revealing few correlations, e.g.
elements 1 and 14, as seen before in layer 1.
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Figure 5.41: Weights in W (left) and corresponding elements in s (right) for digit 0 with parameters Θ2 =
{50, 0.05, 0.3, 0, 1e − 3}.

A more interesting approach is to analyze the weights as features as shown in figure 5.42. The patches has
clearly improved compared to layer 1 and can be recognized as digits in alignment with the less noisy codebook
features in figure 5.40. Despite the quality of these weight features the class. performance has not improved as
already seen.

Figure 5.42: Classification weight as features for layer 2 with parameters Θ2 = {50, 0.05, 0.3, 0, 1e − 3}.

As a different strategy we analyze the much larger network with d = 200 hidden variables. Figure 5.43 shows
the class. error for the different regulations. Initially it can be seen how stronger regulation is required due to
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the larger network size of d = 200. Unfortunately the class. error of ec = 11.0% has not improved compared to
both L1 and the smaller L2 network with d = 50 units.
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Figure 5.43: Classification test errors for layer 2 for d = 200 hidden units.

In addition the regulation of the sources in the top left illustration is optimal for α = 0. This is in opposition
with the light regulation required for the smaller network in figure 5.39 suggesting the empirical regulation
probing being too coarse for d = 50.
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Figure 5.44: Test errors for different degrees of regulation of β with parameters Θ2 = {200, 0.0, 70, 4, 1e − 6}.

More interestingly is the evolution of the reconstruction test error for different regulations of the features in A
as shown in figure 5.44.

As other regulations using γ and σ2 had no significant impact on the rec. test error (not shown), the main
contribution of the rec. bias identified in figure 5.38 for larger layers is caused by overfit of the codebook
features A and sources S. This is due to the width of layer 2 being larger than L1 and thereby allowing an
overcomplete representation of the data and thus a larger risk of overfit as already discussed.
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Figure 5.45: Class. weights as features for β = 0 (top left) and β = 70 (top right) and corresponding energy (bottom)
with parameters Θ2 = {200, 0, β, 4, 1e − 6}.

This can also be viewed from the corresponding class. weight features for the different regulations of A as
depicted in the top of figure 5.45. It is clear to see how the weight features seem fairly generalized for all
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classes, but become more tuned for specific classes for stronger regulations, i.e. classes 2,3 and 5. This is also
evident from the corresponding energy distribution showing how classes 2,3 and 8 are strongly represented.

Class 0 1 2 3 4 5 6 7 8 9 Total
β = 0 42 73 63 91 123 87 94 168 367 134 1242
β = 70 60 54 98 107 137 146 89 104 184 113 1092

Table 5.2: Misclassified digits for each class for network with parameters Θ2 = {200, 0, β, 4, 1e − 6}.

This indicates an overfit for these classes and is also seen from the amount of misclassified digit for these classes
listed in table 5.2 showing a relatively high error rate. Conversely the classes 0 and 1 with poorly recognizable
weight features in figure 5.45 has relatively small error rate.

In our experiments we have in all cases had the classifier network attached, i.e. all parameters were trained in a
single session. Additional simulations without the classifier attached we trained the network in a dual session,
i.e. initially A and S and afterwards the weights W. For both the smaller d = 50 and larger network d = 200
we achieve higher class. test error of ec = 19.3% and ec = 18.95% respectively. This indicates that to obtain
good class. performance the sources must be optimized supervised with class labels during training for each
layer as also seen for the non-negative constrained model.

In the experiments conducted by Bengio et. al. in [2] it was shown for a classification task of the MNIST
dataset (refer to section 5.1) that the classification structure was only necessary in the initial layer. Once the
classification information was learned by the network it meant to stay and hence subsequent layers was only
optimized wrt. reconstruction [2].

To summarize we have analyzed two different strategies for choosing the size of additional layer of our deep
network model. As for layer 1 the large size of d = 200 hidden units of layer 2 with sufficient regulation did
not achieve a class. error rate superior to the smaller size of d = 50 hidden units. Thus for the second layer
the small network with parameters {d = 50, α = 0.05, β = 0, γ = 0.3, σ2 = 1e − 4} is identified as optimal for
classification (still performing horribly) and the performance for both layer sizes can be seen in table 5.3.

L2 Model Rec. error Class. error
{50, 0.05, 0, 0.3, 1e− 4} 7.8% 10.4%
{200, 0, 70, 4, 1e− 6} 3.8% 11.0%

Table 5.3: L2 performance.

The quality and class dependent structure of the misclassified digits for both layer sizes (not shown) are of
similar structure as for layer 1 illustrated in figure 5.30.

5.3.1 Generation of digits

With the second layer added we generate a set of digits for both d = 50 and d = 200 hidden units. Setting
the stop criteria ystop < 1 we experienced similar results as for layer 1 (not shown), where we generated noisy
digits as seen in figure 5.35. Hence we only conduct our analysis with ystop = 1.

For the small network d = 50 and large d = 200 hidden units figures 5.46 and 5.47 depict a set of generated
digits each initialized randomly. The quality of the digits are as seen before very similar to the weight features
W as expected.

Thus considering the influence of the visual quality of the weight features and that the larger network d = 200
with no regulation of the codebook features β = 0 has far better generalized weight features, figure 5.45
shows a subset of generated digits of far better quality. Still we generate basically the same digit for different
initializations as seen before.

To summarize adding the second layer we learned more structured codebook features allowing a small im-
provement on the generative properties of the model. This had a direct impact on the quality of the generated
digits compared to layer 1, but caused the class. error rate to increase.
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Figure 5.46: Generation of digits 0 . . . 9 (each column) for ystop = 1 and different sessions (each row). Bottom row
shows corresponding weights W as features. All with parameters Θ2 = {50, 0.05, 0.3, 0, 1e − 4}. Left: Full dynamic
range. Right: Negative pixels truncated.

Figure 5.47: Generation of digits 0 . . . 9 (each column) for ystop = 1 and different sessions (each row). Bottom row
shows corresponding weights W as features. All with parameters Θ = {200, 0, 70, 4, 1e − 6}. Left: Full dynamic
range. Right: Negative pixels truncated.

Figure 5.48: Generation of digits 0 . . . 9 (each column) for ystop = 1 and different sessions (each row). Bottom row
shows corresponding weights W as features. All with parameters Θ = {200, 0, 0, 4, 1e − 6}. Left: Full dynamic
range. Right: Negative pixels truncated.

From our analysis we have seen how our deep network model greatly suffers from generating digits of suf-
ficient quality. The few digits generated were basically small variants of the same prototype digits stored as
classification weights in W and thus our model does not have the ability to generate different digits.

The prior of the sources p(s) is highly complex and modelling it with a simple Laplace distribution has proven
to be highly insufficient. Digits of high quality has been generated successfully in the deep belief net by Hinton
et al. [12] by modelling this complex toplevel prior with a infinite undirected net.

5.4 Summary

In the extensive analysis of our deep network we have shown the overall performance and limitations in terms
of its generative and discriminative properties, inspite of a relatively limited number of simulations and a
shallow net.

With classification performance as our criteria we have build a 2-layer deep net model based on two different
strategies. From the analysis smaller networks with little regulation showed best class. performance compared
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to larger networks with stronger regulation for both layers.

Cognitive features extracted from NMF proved limited in both classification and reconstruction. The uncon-
strained features of L1 were very abstract structured and could not be characterized as cognitive, but proved
superior for both class. and rec. error rates. compared to the non-negative features due to their exhibitory and
inhibitory effects. In analyzing the initial layer we achieved a classification error rate ec = 9.2% and comparing
with the MNIST hall of fame this is slightly better than a linear classifier (1-layer NN) of 12%.

By adding a second layer we achieved less abstract features and in testing the same strategy for determining
an optimal size of L2 the smaller network also proved best in terms of class. error rate, whereas the larger
layer size showed better reconstruction due to the overcomplete representation as dL2 > dL1. The resulting
classification performance of the second layer did not improve the overall classification compared to the initial
layer. The misclassified digits for L2 (not shown) were of same character as for L1, where the misclassified
digits showed similar structure as the true class data.

One of the major simplifications in our deep network is the modelling of the top level priors p(s) using the
simple Laplace distribution. In the deep belief net of Hinton et al. this top-level prior is modelled by a two layer
RBM equating an infinite net with tied weights allowing for complex modelling and generation of digits. This
simplification of ours have a direct impact on the generation of digits as the latent sources are extracted from
this top-level prior.

The optimal model from L1 were optimized with no regulation on the sources α = 0 and thus models the
source priors with a uniform distribution. This meant the generated digits were only based on classification
information and thus the resulting digits resembled the prototype class. weights with little variance. However
the less abstract codebook features in L2 lead to class. weights resembling recognizable digits and hence digits
generated from L2 were more recognizable than L1, but still of poor quality. The choice using the Laplace
distribution for simplified modelling of the source priors has indeed proven inferior.

To achieve efficient classification performance throughout the layers of the deep network model, the latent
sources must be trained supervised with class labels in each layer. It seems class. information is not maintained
sufficiently between the layers for our model in direct opposition with results found by Bengio et al. [2], where
only training the initial layer supervised was necessary.

Comparing with the deep belief net by Hinton et al. the subsequent retraining revise lower level weights that
were learned first to fit in better with the weights that were learned later. This is achieved relatively easy as the
deep belief net allows simple propagation up and down the layers implemented by complementary priors. Due
to the structure of our deep network model such upward propagation is not simple and thus we have omitted
the fine-tuning of model parameters. However in evaluating the performance of our model such retraining
could seem necessary to achieve better class. error rate and in particular for improving the second layer.

Throughout our analysis we have also seen the importance of learning good generative representation of the
data in order to achieve good classification. Our deep network model can in general not be characterized to
have any high classification performance due to the simplifications made compared to the deep nets based on
Hinton et al. [12].
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6. CONCLUSION

Mathematical modelling of the visual cognition system and in particular the primary visual cortex has received
much attention throughout the years. In this context this thesis introduced the area of modelling cognitive
representations for visual data.

We presented cognitive components as unsupervised grouping of data such that the ensuing group-structure is
well-aligned with that resulting from human cognitive activity [8]. Using generative models has the appealing
property of allowing a strong representation of the underlying structure of observed data. In this respect we
build different generative models in our cognitive analysis based on cognitive components extracted unsuper-
vised from NMF, MF both linear and non-linear.

An efficient cognitive generative model will in this sense capture the underlying structure of the cognitive
components to generate new data. We proposed two different model types as candidates for such efficient
cognitive models, namely The Mixture Models and Deep Network Models.

Mixture Models

The principle of building advanced models from simpler ones is an easy and very efficient approach in modelling
complex structures. Based on a linear model we extracted sparse cognitive features using NMF. The first mixture
model grouped the sources using K-Means and proved highly inefficient as it only captured high level correlation
between the features and lead to very poor generation of new digits.

As a natural step the more advanced Gaussian mixture model (MoG) was introduced as a potential improve-
ment. Maximum likelihood learning of the model was described in terms of the Expectation-Maximization
algorithm as tractable approach for training mixture model parameters. The MoG model generated far better
digits, but failed to model the feature correlation efficiently.

Extending the MoG model to include dimension reduction of the data by introducing the factor analyzer as a
new kernel function resulted in a slight improvement of the generated digits, as it better captured subdimen-
sional structures.

In general the class of mixture model described in this thesis all suffered from lack of complexity in capturing
the underlying structure of the visual data and hence proved inefficient for modelling visual cognitive data.

Deep Network Models

Deep belief nets introduced by Hinton et al. has proven superior as a generative model for cognitive data also
used for classification [12]. This model induced complementary priors as an essential concept allowing for very
flexible propagation through the network layers.

The concept of using a generative model for classification tasks is in general an efficient approach as it allows a
stronger representation of the full structure of observed data. In this respect we have given a short description
of the principles of Hinton’s deep belief model to serve as a motivation for proposing a simpler deep network
model limited to only generative propagation.

A theoretical framework was presented as individual modules with different modelling properties used to build
a deep network model. By training each layer separately unsupervised we have analyzed a shallow structured
deep net in terms of classification and generation of digits.

Non-negative sparse features characterized as cognitive components proved limited in performance due to the
absence of inhibitory parts. Our model was therefore based on unconstrained abstract features not character-
ized as cognitive.

The generative properties of the deep network model greatly suffered from the simplification of modelling the
source priors with a simple Laplace distribution and became particularly evident from our experiments. Hence
efficient modelling of top-level priors is essential in deep network models to achieve good generative properties.
Using a generative representation for classification has the possibility of projecting data onto subdimensional
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manifolds allowing for greater separation and thus simpler discrimination. In our experiments we achieved
poor classification performance slightly better than a 1-layer linear classifier for the MNIST dataset.

As our model suffered from simple recognition propagation we omitted any subsequent fine-tuning of model
parameters. For a shallow deep network we experienced degraded performance for additional layers suggesting
the essential need for a subsequent interlayer fine-tuning. We conjecture the absence of the 2nd stage training
has been a major contributor to the overall degraded performance of our deep network model.

6.1 Outlook

The concept of deep networks has proven very powerful as both a generative and discriminative model. In
terms of modelling the processing of the visual cortex these model also resemble the same overall structure
of gradually learning more abstract representations. Hence future variants of our model should point in the
direction of deep belief network as introduced by Hinton et al. [12].

With the motivation of modelling features seen in the visual cortex, i.e. Gabor-like filters, an additional module
can based on the constraint of independent sources. Using ICA for visual data has shown to produce these
sparse localized structures resembling receptive fields in V1 [1] [14].

Our implementation of the learning of the deep network model is based on the simple 1st order gradient descent
approach. This method may guarantee a local optimum provided sufficiently small stepsizes, but are often very
slow due to the gradient becoming smaller as it approaches a solution. Training the model based on 2nd order
optimization, such as Newton-based methods, may reduce simulation times and serves as a straightforward
improvement.

Initially our model is build from greedy learning without any subsequent interlayer dependent fine-tuning.
Omitting such post-training certainly has a an impact on overall performance as the model parameters will not
be optimized all together, but only individually. Hence incl. a retrofit of model parameter for fine-tuning may
serve as a major improvement.
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A. APPENDIX

This appendix is a collection of small mathematical derivations useful for the main analysis’ in the report, some
self-contained.

A.1 Appendix - Principal Component Analysis

One of the most simple decompositions is the Principal Component Analysis (PCA) with two important properties
used in information processing, namely whitening and dimension reduction, where whitening is defined as the
process of removing any mean-value from the data, ensuring unity variance and decorrelating the data (i.e.
zero covariance). This technique of whitening is used widely as a pre-processing step in data analysis as it
allows 1st and 2nd order information to be reduced or aligned for datasets from different sources.

The basic concept in PCA is to transform a random variable x onto a set of orthogonal axis (denoted the
principal components) based on maximizing 2nd order information or variance of x. In this context we will
describe PCA both as a pre-processing step in terms of whitening data and as an efficient tool for dimension
reduction of data.

Let us denote the dataset X = {xn}Nn=1, where xn is an m dimensional column vector, i.e. X is an m × N
matrix. In this context, we introduce the expectation operator E(·) as statistical averaging given by

E{x} =
∫ ∞

−∞
x px(x) dx (A.1)

where px(x) denoted the probability density function for x.

The sample mean μi can easily be determined as the 1st order moment by μi = E{yi}mi=1, where yi in this
case is the N -dimensional i’th row vectors of X. As the data xn is usually based on measurements, the prob-
ability density px(x) may not always be known. The mean vector μ = {μ1, μ2, . . . , μm} can in these cases be
approximated empirically by

μ ≈ μ̂ =
1
N

N∑
n=1

xn (A.2)

Similarly the covariance is determined by the 2nd order central moment (2nd order moment with zero mean)
by C(xk, xl) = E{(xk − μk)(xl − μl)}, for k, l = 1, 2, . . . , m. For k = l, the covariance becomes C(xk, xk) = σ2

k,
i.e. the variance of xk. The corresponding covariance matrix Σ for m = 2 can be expressed as

Σ =
[

σ2
1 C(x1, x2)

C(x2, x1) σ2
2

]
(A.3)

From the definition of C it is easy to see C(x1, x2) = C(x2, x1) and that Σ is symmetric and always positive
semi-definite. This can similarly be approximated empirically unbiased by

Σ̂ ≈ 1
N −m

N∑
n=1

(xn − μ̂)(xn − μ̂)T (A.4)

With the definition of the covariance matrix, it is easy to see that a white dataset has the identity matrix I as
the covariance matrix, i.e. Σ = I, where the data components have unity variance and zero covariance.

To decorrelate the data X, we decompose the covariance matrix into Σ = UΛUT, which can be re-written to :
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Σui = λiui (A.5)

where U holds the orthonormal eigenvectors U = {ui}mi=1, where UUT = I and
diag(Λ) = {λi}mi=1 is the corresponding set of eigenvalues. Since Σ is always positive semi-definite, the eigen-
values are always non-negative. Geometrically this can be illustrated as in figure 3.1.

u1u2

2
1

x2

x1

Figure A.1: Geometric illustration of the eigenvalue decomposition of the data subset X for dimensions m = 2.
Here the ellipse depicts the constant joint probability density p(x1,x2) and the eigenvectors u1 and u2 denotes the
directions of maximum variance with lengths proportional to the eigenvalues, λ1 and λ2.

In the eigenvalue decomposition, the orthonormal eigenvectors U denotes the directions of maximum variance
(called the Principal Components) and the corresponding eigenvalues are proportional to their lengths, refer to
[4].

Decorrelating the data corresponds to a coordinate transformation of the datapoints xi,n using the eigenvectors
U with lengths Λ− 1

2 as basis vectors, i.e. :

zi = Λ− 1
2 UT (xi − μ) = V(xi − μ) (A.6)

By sorting the eigenvectors wrt. eigenvalues in descending order, the dimension of the dataset X can easily be
reduced to d dimensions by projecting the datapoints xi,n onto a subset of the eigenvectors with the d largest
eigenvalues U′

d = {ui}di=1, where d < M .

This eigenvalue decomposition can also be achieved by Singular Value Decomposition (SVD), where the data
itself is decomposed into X = UΓVT . Here U (symmetric m ×m matrix) and V (symmetric N × N matrix)
holds the ordered orthonormal eigenvectors for the column and row vectors in X respectively and the diagonal
elements of Γ (m× N matrix) holds the corresponding shared singular values, refer to [21] for details. From
the SVD we can construct a covariance matrix E{XXT } = UΓVT VΓUT = UΓ2UT , which is exactly the
eigenvalue decomposition with Γ2 = Λ. This means the decorrelation can be achieved by :

zi = Γ−1UT (xi − μ) (A.7)

where Γ and U can be reduced in size d < m to obtain dimension reduction of the data.

In data analysis with high dimensional data m > 2, PCA can be a useful tool for reducing dimensions to d = 2 for
visualization of the data. In such case the data X is projected into the 2 eigenvectors U2D = {umax,1,umax,2}
with the two largest eigenvalues {λmax,1, λmax,2}.
In the example below we illustrate the effect of whitening and dimension reduction using PCA.

Example :
In this example, we have applied PCA to a small set of image data (1000 samples of size 28× 28× 1),
which will be described in details in section 3.1. Figure A.2 shows the scatterplots of the image data
over dimension 1 and 2 and the corresponding 1st and 2nd principal axes after decorrelation.

The left illustration of figure A.2 clearly shows how the image data is strongly correlated since
information of one variable gives information of the other. The dynamic range for the image data can
also be seen as the scatterplot is bound from approximately ∼[0; 0.16]. The right figure show how
the data is uncorrelated after whitening with unity variance. Information of one variable now gives
no information of the other.
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Figure A.2: Left: Scatterplot of un-processed image data for 1st and 2nd dimension. Right: Scatterplot of 1st and
2nd principal axes after whitening.

As an alternative approach, PCA can also be derived from a probabilistic approach, denoted Probabilistic PCA
(PPCA), based on the same linear model as Factor Analysis (FA) with similar properties, presented later in
section 2.5.1. PPCA will not be discussed here, but will be compared to FA shortly later and can be referred from
[29]. The Principal Component Analysis presented will also later be applied to image data for easy visualization,
as we shall see. In case of viewing covariance matrices, we show in appendix A.4 how these are projected into
a set of principal components.

A.2 Appendix - Bound in the EM algorithm

The "EM"-algorithm is based on estimating and increasing a bound F(ph,Θ). In this section we will make a
derivation of that bound.

By introducing the latent variable h denoting the unknown class labels, the log-likelihood for the data as defined
in (2.15) can be redefined as the incomplete log-likelihood to

Linc(Θ) =
∑

n

ln p(xn|Θ) =
∑

n

ln
∫

p(xn|H,Θ) dH (A.8)

where H = {hn}Nn=1 is the latent random variable invoked. By introducing the latent variables hn, we can
simplify the maximization problem of the likelihood Linc(Θ). If we denote the distribution for the latent
variables ph(H) and assume a distinct distribution ph(hn) for each sample xn, we can marginalize over the
latent variables hn and the incomplete log-likelihood Linc(Θ) becomes

Linc(Θ) =
∑

n

ln p(xn|Θ) (A.9)

=
∑

n

ln p(xn|Θ)
∫

ph(hn) dhn (A.10)

=
∑

n

∫
ph(hn) ln p(xn|Θ) dhn (A.11)

since
∫

ph(hn) dhn = 1 the introduction of ph(hn) does not affect the log-likelihood Linc(Θ). We can further
expand the probability p(xn|Θ) = p(xn|Θ)p(hn|xn,Θ)

p(hn|xn,Θ) = p(xn,hn|Θ)
p(hn|xn,Θ) and rewrite (A.11) into

Linc(Θ) =
∑

n

∫
ph(hn) ln

(p(xn,hn|Θ)
p(hn|xn,Θ)

ph(hn)
ph(hn)

)
dhn (A.12)

=
∑

n

∫
ph(hn) ln

p(xn,hn|Θ)
ph(hn)

dhn +
∑

n

∫
ph(hn) ln

ph(hn)
p(hn|xn,Θ)

dhn (A.13)
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The term inside the last summation is identified as the Kullback-Leibler divergence KL
(
ph(hn) || p(hn|xn,Θ)

)
and is characterized by always being non-negative. Refer to appendix A.3 for a more detailed description of the
Kullback-Leibler divergence. This allows us to form a lower bound on the log-likelihood as

Linc(Θ) =
∑

n

∫
ph(hn) ln

p(xn,hn|Θ)
ph(hn)

dhn +
∑

n

KL
(
ph(hn) || p(hn|xn,Θ)

)
(A.14)

≥
∑

n

∫
ph(hn) ln

p(xn,hn|Θ)
ph(hn)

dhn (A.15)

Δ= F(ph,Θ) (A.16)

This important result shows that the introduction of the latent variables results in a lower bound (known as the
free energy in statistical physics) on the incomplete likelihood, F(ph,Θ) ≤ Linc(Θ). This inequality can also be
derived from Jensen’s Inequality (this is the more popular approach in the literature, e.g. [4]), which is based
on the concavity of the logarithm function, refer to [4] for a more detailed description. The bound F(ph,Θ)
can be further expanded into

F(ph,Θ) =
∑

n

∫
ph(hn) ln

p(xn,hn|Θ)
ph(hn)

dhn (A.17)

=
∑

n

∫
ph(hn) ln p(xn,hn|Θ) dhn −

∑
n

∫
ph(hn) ln ph(hn) dhn (A.18)

where the last term inside the sum can be identified as the differential entropy of h, denoted H(h) (refer to
appendix A.3). If we define the complete log-likelihood by Lc(Θ) = ln p(X,H|Θ), we can rewrite (A.18)

F(ph,Θ) = Eh{Lc(Θ)} −
∑

n

H(h) (A.19)

where the first term is the expected value of the complete-data log-likelihood with respect to the latent variables
h. This bound function is the basis of the iterating "EM"-algorithm.

A.3 Appendix - Kullback-Leibler divergence

For a random variable x with probability distribution p(x), the differential entropy H defined from information
theory, expresses a degree of information that the observed variable x gives [16] and is defined as

H(x) = −
∫

px(η) log px(η) dη (A.20)

The entropy has the essential property of becoming larger the more "random" or unpredictable the data x is.
This is one of the main reasons why the entropy is a fundamental building block in information theory, incl. the
KL-divergence.

For two different distributions p(x) and q(x) the mutual information is an expression of how much information
members from p(x) has on members from q(x). One way to measure the mutual information is the Kullback-
Liebler-divergence (KL), which is based on the entropy and defines a quantity to compare the difference be-
tween two probability distributions, p(x) and q(x).

KL(p||q) = −
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx (A.21)

As KL is based on the entropy the KL-divergence is a non-negative function and is only zero if and only if the two
distributions p(x) and q(x) are equal. In addition the KL-divergence is asymmetric, i.e. KL(p||q) �= KL(q||p).
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A.4 Appendix - Visualizing multivariate covariance matrices

In this appendix section we show how a multivariate covariance matrix Σ can be visualized in a 2D environment
via Principal Component Analysis (PCA), refer to section A.1 for details.

Given an M dimensional random variable x = {xm}Mm=1 with mean μx and covariance Σx, we decompose
the covariance matrix Σx into Σxum = λmum via EVD to extract the eigenvectors U = {um}Mm=1 and the
corresponding eigenvalues {λ1, λ2, . . . , λM}.
The data x can now be visualized by linearly projection onto the 2 eigenvectors U2D = {umax1 ,umax2} with
the 2 largest eigenvalues to achieve the 2 dimensional variable z defined as

z = UT
2D(x− μx) (A.22)

The covariance of the lower dimensional data Σz can now be expressed based on the covariance Σx as

Σz = E{zzT } = E{UT
2D(x− μx)(x− μx)T U2D}

= E{UT
2DxxT U2D + UT

2Dμxμx
T U2D}

= UT
2DΣxU2D + UT

2Dμxμx
T U2D

where the last term on the right side is the projected mean. If we therefore assume x has zero mean μx = 0 we
can reduce the covariance Σz to

Σz = UT
2DΣxU2D (A.23)

This means the multivariate covariance Σx can now be reduced in dimensionality to Σz for easy viewing.

A.5 Appendix - Extracting random sample from mixture models

In section 2.4 and 2.5 the Gaussian mixture model and the mixture of factor analyzers were presented. In this
section we show how to extract a random variable x from each of these two mixture models given by their
general form

p(x) =
∑

k

αk · p(x|k) (A.24)

where αk are the priors for each mixture component and p(x|k) denotes the kernel function. For the Gaussian
mixture model p(x|k) is given by (2.30) and for the mixture of factor analyzers p(x|k) can be derived from
(2.54), rewritten here for convenience

MoG ∼ p(x|k) = N (μk,Σk) (A.25)

MFA ∼ p(x|k) = N (μk,ΛkΛT
k + Ψ) (A.26)

As mentioned earlier, the advantage of these mixture models are their ability to model complex probability
distributions p(x) through combinations of much simpler kernel functions p(x|k). Figure A.3 illustrates an
example of such a mixture model with 4 mixture components.

Extracting a random variable x from equation (A.24) can be described as a two step procedure :

1. Select random mixture component k with prior probability density αk.

2. Extract x from the k’th mixture component using the corresponding k’th set of parameters for the kernel
function, p(x|k).
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p(x)

x
1 2 3

p(1)

p(2)

p(3)
p(4)

4

Figure A.3: Example of how p(x) can be modelled
by a mixture of 4 Gaussian kernel functions with
individual mean vectors and covariance matrices
as parameters.

p(k)

cdf(z)

z
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k

Figure A.4: Example showing how the cdf(z) can
be calculated by cumulating the probabilities in
αk.

To extract a random mixture component k we form the corresponding cumulative distribution function (cdf)
from αk by cumulating the probabilities cdf(z) =

∑z
k=0 αk, as illustrated in figure A.4. By generating a random

variable z from a uniform distribution, we can extract a random k from cdf(z) such that k has αk as probability
density.

The data x is then generated by extracting from the kernel function using the k’th set of parameters, Θk.
For the Gaussian kernel function given in (2.30) Θk = {μk,Σk} and for the factor analyzer given in (2.53)
Θk = {μk,Λk,Ψ}.
However instead of using a Gaussian distribution directly for the MFA we can exploit the FA linear model
x = Λz + ε in the extraction. If we expand p(x|k) to

p(x|k) =
∫

p(x|z, k)p(z|k) dz (A.27)

and identify p(x|z, k) = N (μk + Λkz,Ψ) and p(z|k) = p(z) = N (0, I), we can lead to a more simplified
procedure of extracting data. Initially a random factor z is generated from N (0, I) and mapped to an d-
dimensional affine space by computing μk + Λkz. Afterwards x is formed by adding ε generated from N (0,Ψ).

These procedures for extracting random variables from the Mog and MFA model are both implemented in
MATLAB in appendix A.5.

A.6 Appendix - Maximum Likelihood of Gaussian data

In this section we derive a maximum likelihood parameter estimate of a linear model with additive Gaussian
noise and show how this is related to the least-squared estimate. We further show how the decomposition of
the LS-estimate leads to the Bias/Variance Tradeoff and how this can be used in evaluating model complexity.

Consider an observed dataset X = {xn}Nn=1 with additive Gaussian noise ε distributed by N{0, σ2I}, where σ2

is a vector with same dimension as x. If we further assume x is generated from a linear composition, we can
express the model of the observed data by

x = As + ε (A.28)

where A and S are both considered model parameters given by A = {ar}dr=1 and S = {sn}Nn=1, where s is a d
dimensional source-vector. If we assume the noise ε is uncorrelated with isotropical variance (i.e. σ is a scalar)
we can express the likelihood of a single observed datasample as

p(x|s) =
1√

(2π)M |σ2I| exp
(
− 1

2σ2
(x−As)T (x−As)

)
(A.29)

The log-likelihood for all observed datasamples can now be written as
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L = log p(X|S) =
N∑

n=1

[
− 1

2σ2
(xn −Asn)T (xn −Asn)

]
+ log(k) (A.30)

= − 1
2σ2
‖ X−AS ‖2 + log(k) (A.31)

where log(k) is a normalization constant. In a max. likelihood estimate of the model parameters A and S we
see that the maximum is reached when X = AS. More importantly eq. (A.31) shows that a max. likelihood
estimate are the same as minimizing the least-squared error. This simple relation is the main assumption for
employing the least-squared estimate as a max. likelihood solution, as we have done in our optimization of the
matrix factorizations in sections 2.1, 4.3.1 and 4.3.2.

We can further expand the analysis by denoting the model estimate As + ε as dependent on x by y(x). If we
now evaluate the expectation of the least-squared estimate [4] we get

E = E
{[

y(x)− E{x}]2} =
[
E{y(x)

} − E{x}]2

︸ ︷︷ ︸
(Bias)2

+ E
{[

y(x) − E{y(x)}]2}︸ ︷︷ ︸
V ariance

(A.32)

This shows how the generalization error can be expanded into a bias and a variance term. In evaluating the
complexity of a given model, these two terms become useful. If a model estimate is on average different over
all datasets from the desired function E{x}, then it is said to suffer from a bias and manifests in a large bias
term. In contrast if the model estimate is sensitive to a particular training set it is considered overfitted and will
have a large variance term in (A.32). In case of a perfect optimization, where X = AS, we see that the bias
term disappears and the variance term is reduced to the variance of the noise ε.

A.7 Appendix - Gibbs sampling

Extracting samples from a complex probability distribution p(x, c) without a simple analytic expression can
be achieved by the iterative Gibbs sampling method. The joint probability can be factorized into two differ-
ent conditional distribution as p(x, c) = p(x|c)p(c) = p(c|x)p(x). To conduct the sampling these conditional
probabilities must be tractable as they form the iterative steps in the algorithm.

Gibbs sampling is illustrated in figure A.5 for the two dimensional case p(x) = p(x1, x2) as an example, where
each iteration consists of two similar steps. For the current state x(t), x

(t)
2 is used to extract the next sample

x
(t+1)
1 from the conditional distribution p(x(t+1)

1 |x(t)
2 ) and similarly for x

(t+1)
2 forming the next state x(t+1).

x1

x2

x
(t)x1

(t+1)

p(x1|x2)

x1

x2

x
(t+1)

p(x2|x1)

x1
(t+1)

Figure A.5: Principal illustration of Gibbs sampling from a joint distribution p(x1, x2)

These steps form an iterative algorithm for which it can be shown that x(t) tends to p(x) for t→ ∞ [19]. This
also makes intuitive sense from the figure A.5, where the iterations ensures settlement ’within’ the distribution.
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B. APPENDIX: CODE SECTION

In this section the MATLAB code is listed in all its detail. Certain functions are part of a tool-package and is not
listed here, please refer to the DVD for a reference.

B.1 Appendix - General MATLAB code

Show image patches

� �

function showPatch (D, K, scale , L)

% Show image patches
% -------------------------------------------------------------------------
% Input parameters
% D : Data as a d x N matrix
% K : No. of patches in a row , width of figure
% scale : ’single ’ - Each patch is preprocessed for max.
% constrast , i.e. dyn. range of [0:1]
% ’all ’ - All patches are scaled as one to have
% better view energy
% ’none ’ - Truncates the negative part due to uint8
% L : Vector holding borders for vertical lines , used
% with K-means.
%
% Output parameters
% Figure illustrating image patches.
% -------------------------------------------------------------------------

% Initalize
if nargin < 4 L = 0; end
d = 3;

% Dimensions
dY = sqrt (size(D ,1));
dX = sqrt (size(D ,1));

k = 1; dx = d; dy = d;
N = size (D ,2);
Y = ceil (N/K);

% Initialize with white background
View = 255* ones (dY*Y+d*(Y+1), dX*K+d*(K+1), ’uint8’);

switch (scale)
case ’single’

% Pre -process - Scale individual patch
D = D - repmat(min(D), size(D,1), 1); % Add min. to have non -neg. values
D = D ./ repmat(max(D)+eps , size(D,1), 1); % Scale for max. contrast

case ’all’
D = D ./ repmat(max(abs(D))+eps , size (D,1), 1)+0.5; % Scale for max. contrast

end

% Convert to uint8 for plotting
D = uint8(255*(1 -D));

% Convert vectors to image patches
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for k = 1:N
xPos = (dX+d)* mod(k-1, K)+1 + d;
yPos = (dY+d)* floor((k -1)/ K) + d;

patch = reshape(D(:,k), dX , dY , 1);
View (yPos :yPos +dY -1, xPos :xPos +dX -1) = patch;

end

% Finally show patches as image
View (1,:) = 0; View (end ,:) = 0; View (:,1) = 0; View (:,end) = 0; % Black border

% Insert horizontal lines
if (length(L) > 1)

for i = 0:(N/K)-1
View(i*31+1 ,:) = 0;

end
end

% Insert vertical lines for grouping
j = 0;
for i = 1: length(L)-1

j = j + L(i);
x = mod(j,K) * (dX +3) + d+1;
y = floor(j/K);
View (y*(dX +3)+1:(y+1)*(dX+3)+1 , x) = 1;
imshow(View );

end

% Finally show figure
imshow(View );
� �
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B.2 Appendix - MATLAB code for Mixture Models

MATLAB code - The K-Means algorithm

� �

function [CC , CID , dist_2_CC , it] = K_means (D, K, CC , opt)

% K-means
% -------------------------------------------------------------------------
% Input parameters
% D : Data as column vectors
% K : Amount of clusters
% CC : Initial cluster centers
% opt.plot : Enable plotting during iteration , employes PCA

% Output parameters
% CC : Resulting cluster centers
% CID : Cluster assignments
% dist_2_CC : Metric distance to assigned cluster center
% it : No. of iterations used .
% -------------------------------------------------------------------------

fprintf([’K-Means ,␣K␣=␣’ num2str(K) ’␣clusters ...’]);

% Prepare data if plotting flag enabled
if (opt.plot == 2)

% PCA to visualize
D_mean = mean(D,2);
D_m = D - repmat(D_mean , 1, size(D ,2)); % Subtract mean

% Calc . eigenvectors
cov_D = D_m*D_m ’/size (D_m ,2);
[E, L] = eig(cov_D);
U = E(:,end: -1:1); % Reverse for largest eigenvector first

% Project data onto largest principal components
D_pca = U(:,1:2)’ * D_m; % Reduce dimensions
clear D_m cov_D E;

CC_init = U(:,1:2)’ * (CC - repmat(D_mean , 1, size(CC ,2)));
end

% Initialize
N = size (D ,2); % number of training examples
CID = zeros(N ,1); CID_old = ones (N ,1); it = 1;

while ~isequal (CID , CID_old ) & it < opt.maxIT
CID_old = CID;

% Calc . distance as (a+b)^2
dist = ones (N ,1)* sum(CC.*CC) + sum((D.*D))’* ones (1,K) - 2*D’*CC;

% Find index of closest cluster
[dist_2_CC , CID] = min(dist ,[],2);
if (K == 1)

dist_2_CC = dist ; CID = ones (1,N); % dummy if K = 1
end

% Re -estimate the cluster centers
for k = 1:K

indexk = find(CID ==k);
if sum(indexk) > 0,

CC(:,k) = mean(D(:, indexk), 2);
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end
end
it = it + 1;
fprintf(’.’);

if (opt.plot == 1)
% Plot
MU = U(:,1:2)’ * (CC - repmat(D_mean , 1, size(CC ,2)));

figure (200) , plot(D_pca(1,:), D_pca(2,:) , ’*g’), hold on;
plot (MU(1,:), MU(2,:), ’or’, ’LineWidth ’, 3);
plot (CC_init (1,:), CC_init (2,:), ’*b’);
xlabel(’1.␣Principal ␣Componens ’); ylabel(’2.␣Principal ␣Component ’);
hold off , grid , drawnow;

end
end
it -1;

fprintf(’Ok\n’);
return;
� �

Page 91



B.2 Appendix - MATLAB code for Mixture Models

MATLAB code - Codebook Clustering

� �

% Codebook clustering using K-Means algorithm

clear; close all;

% Initialize
digit = 2; % Which digit
d = 30; % No. of NMF features , dimensions
K = [5 8 10 15 20]; % Mixture components
opt.maxIT = 100; % Stop criteria
opt.plot = 0; % Plot during runtime

% Load data
load ([’Data /MNIST/Code / NMF_pp/nmf_ ’ num2str(digit) ’_d’ num2str(d) ’.mat ’]);

[d N] = size(A);
D = zeros(d,length(K)*10);

for kk = 1: length(K)
% Initialize with random datapoint as clusters .
CC = A(:, ceil(N*rand(K(kk ) ,1)));

% Run K-means
[mu , CID , dist_2_CC , it] = K_means(A, K(kk), CC , opt );

% Sort by Cluster ID
A_ = ones (d, N); i = 1;
for k = 1:K(kk)

id = find(CID == k); lid(k) = length(id);
if (lid(k) ~= 0)

A_(:,i:i+lid(k)-1) = A(:,id);
i = i+lid(k);

end
end

% Extract from model
D_temp = zeros(d ,10);
for j = 1:10

i = 1;
for k = 1:K

if (lid(k) ~= 0)
seg = A_(:,i:i+lid(k)-1);
i = i+lid(k);
D_temp (:,j) = D_temp(:,j) + seg(:, ceil(lid(k)*rand (1)));

end
end

end

D(:,(kk -1)*10+1:( kk *10)) = D_temp;
end

% Plot
figure(1), showPatch (mu , 10, ’single’);
figure(3), showPatch (A_ , 10, ’single’, lid );
figure(10), showPatch (D, 10, ’single’);
� �
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MATLAB code - Mixture of Gaussians

� �

function [mu sigma2 p_k_x p_k perf ] = MoG(D, K, opt);

% Mixture of Gaussians used the EM algorithm
% -------------------------------------------------------------------------
% Input parameters
% D : Data as a d x N matrix
% K : Number of clusters
% opt.variance : Type of covariance matrix sigma2
% ’full ’ - full d x d covariance matrix
% ’diag ’ - diagonal matrix with sigma2 defined as d x K
% matrix
% ’iso ’ - isotropical variance with a constant down the
% diagnonal of sigma2 defined as a K dim. vector.
% opt.resp_tol : Log - likelihood tolerance use as stopping criteria
% opt.maxIT : Max. number of EM iterations
% opt.plot : Plot during iterations
% opt.debug : Debug code by forcing 2D data , i.e. no PCA applied.

% Output parameters
% mu : Means of clusters as a d x K matrix
% sigma2 : Covariances of clusters , see opt.variance above for
% formats
% p_k_x : Probability p(k|x) given as a K x N matrix
% p_k : Probability p(k) given as a K dim. vector
% perf .it : Number of iterations used
% perf .ll : Log -likelihoods during iterations
% perf .resp_delta : Difference in responsibility
% -------------------------------------------------------------------------

% Force 2 dim. data during debuging
if (opt.debug == 1)

D = D(1:2 ,:);
end

% Initialize
fprintf([’Gaussian ␣Mixture ␣Model ,␣K␣=␣’ num2str(K) ’␣components ...’]);
[d N] = size(D);

% Prepare data if plotting flag enabled
if (opt.plot == 1)

if opt.debug == 0
% PCA to visualize
D_mean = mean(D ,2);
D_m = D - repmat(D_mean , 1, size (D ,2)); % Subtract mean

% Calc . eigenvectors
cov_D = D_m*D_m ’/size (D_m ,2);
[E, L] = eig(cov_D);
U = E(:,end: -1:1); % Reverse for largest eigenvector first

% Project data onto largest principal components
D_pca = U(:,1:2)’ * D_m; % Reduce dimensions
clear D_m cov_D E;

else
% if debugging , use dummy transformation matrix etc.
U = eye(2); D_mean = zeros(d,1);
D_pca = D;

end
end
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% Initialize model parameters
logp_k = log(ones (K ,1)/ K); % Equal weighting of clusters
p_x_old = 0;
ll = 0;

% Select random datapoints as initial means
mu = D(:, ceil(N*rand(K ,1)));

% Initialize variances with covar matrix for entire dataset .
temp = D - repmat(mean (D,2), 1, N);
temp = temp *temp ’ / N + 1e -6*eye(d);

switch (opt.variance )
case ’full ’

sigma2 = repmat(temp , [1 1 K]); % Use entire matrix
case ’diag ’

sigma2 = repmat(diag (temp ), [1 K]); % Extract only diagonal
case ’iso’

sigma2 = trace(temp )*rand(K ,1) / N; % Use sum of diagonal (trace)
sigma2 = rand(K,1);

% Square input data for later use
D_2 = ones (K,1)* sum((D.*D));

end
clear temp ;

% Expectation -Maximization loop
% -------------------------------------------------------------------------

% Init parameters .
mu_old = mu; it = 1; resp_delta = inf; p_k_x_old = zeros(K,N);
while (it < opt.maxIT & resp_delta > opt. resp_tol )

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Expectation step

% Calc . log(p_k_x)
for k = 1:K

% Extract mean for the k’th cluster
mu_k = mu(:,k); mu_k = mu_k (:,ones (1,N));

switch (opt.variance )
case ’full ’

i_sigma2 = inv(squeeze(sigma2 (:,:,k)));
Gauss_norm = - 0.5*( d*log(2*pi) + logdet(squeeze (sigma2(:,:,k))) );
logp_x_k (k,:) = logp_k(k) + Gauss_norm ...

- 0.5 * (sum( (D-mu_k ).*( i_sigma2 *(D-mu_k )), 1 ));
case ’diag ’

i_sigma2 = 1 ./ max(eps , sigma2(:,k));
Gauss_norm = - 0.5*( d*log(2*pi) + sum(log(sigma2(:,k)) ));
logp_x_k (k,:) = logp_k(k) + Gauss_norm - 0.5 * i_sigma2 ’ * ( (D-mu_k ).^2 );

case ’iso’
i_sigma2 = 1./ sigma2(k); i_sigma2 = i_sigma2 (ones (d,1), :);
Gauss_norm = - d/2 * log(2*pi*sigma2(k));
logp_x_k (k,:) = logp_k(k) + Gauss_norm - 0.5 * i_sigma2 ’ * ( (D-mu_k ).^2 );

end

end
max_logp_x_k = max(logp_x_k ); % numerical stability , remove largest value
p_x_k = exp(logp_x_k - max_logp_x_k (ones (K,1) ,:));
p_x = sum(p_x_k ,1);
p_k_x = p_x_k ./ p_x(ones (1,K), :); % Responsibility
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Maximization step

% Mean
mu = ( diag (1./ sum(p_k_x ’)) * p_k_x * D’ )’;

% Variance
switch (opt.variance )

case ’full ’
for k = 1:K

mu_k = mu(:,k); mu_k = mu_k (:, ones (1,N));
p_k_x_k = p_k_x(k,:); p_k_x_k = p_k_x_k(ones (d,1), :);
sigma2 (:,:,k) = ((D - mu_k ) * (p_k_x_k ’ .* (D - mu_k )’)) / sum(p_k_x(k ,:));
sigma2 (:,:,k) = sigma2 (:,:,k) + 1e -6*eye(d); % Numerical stability during inv.

end
case ’diag ’

for k = 1:K
mu_k = mu(:,k); mu_k = mu_k (:, ones (1,N));
p_k_x_k = p_k_x(k,:); p_k_x_k = p_k_x_k(ones(d,1), :);
sigma2 (:,k) = sum(p_k_x_k .*(D-mu_k ).^2 ,2) / sum(p_k_x(k ,:));

end
case ’iso’

dist = sum(mu .*mu)’* ones (1,N) + D_2 - 2*mu ’*D;
sigma2 = (1/d)*diag (1./ sum(p_k_x ’)) * (sum(( dist .*p_k_x)’)’) + 1e-6* ones (K,1);

end

% Component prior
p_k = sum(p_k_x , 2) / N;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Log - likelihood

% Stopping criteria - Responsibility
ll(it+1) = sum(log(sum(exp(logp_x_k ))));

% Compute change in responsibility
resp_delta = sum(sum(abs(p_k_x_old - p_k_x))) / N;
p_k_x_old = p_k_x;
perf . resp_delta (it) = resp_delta ;

it = it + 1;
fprintf(’.’);

if (opt.plot == 1)
% Plot , slow !
MU = U(:,1:2)’ * (mu - repmat(D_mean , 1, size(mu ,2)));

figure (200) , plot(D_pca(1,:), D_pca(2,:) , ’.g’), hold on;
plot (MU(1,:), MU(2,:), ’or’, ’LineWidth ’, 3);
for k = 1:K

switch (opt.variance )

% Full , draw ellipses
case ’full ’

circle = [cos(2*pi *(1:101)/100); sin(2*pi *(1:101)/100)];
if (opt.debug == 1)

[E, Lambda] = eig(sigma2(:,:,k));
x = E*diag(sqrt(diag (Lambda ))) * circle;

else
e = U; e = e(: ,1:2);
x = e’*(sign (sigma2 (:,:,k)).* sqrt(abs(sigma2(:,:,k))))*e * circle;
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end
plot(x(1 ,:)+ MU(1,k), x(2 ,:)+ MU(2,k), ’r’, ’LineWidth ’, 2);

% Diagonal , draw ellipses
case ’diag ’

circle = [cos(2*pi *(1:101)/100); sin(2*pi *(1:101)/100)];
if (opt.debug == 1)

[E, Lambda] = eig(diag(sigma2(:,k)));
x = E*diag(sqrt(diag (Lambda ))) * circle;

else
e = U; e = e(: ,1:2);
x = e’*diag(sqrt(sigma2(:,k)))* e * circle;

end
plot(x(1 ,:)+ MU(1,k), x(2 ,:)+ MU(2,k), ’r’, ’LineWidth ’, 2);

% Isotropical , draw circles
case ’iso’

plot(MU(1,k)+sqrt (sigma2(k))*sin (2*pi *(0:31)/30) , ...
MU(2,k)+sqrt (sigma2(k))*cos (2*pi *(0:31)/30) ,’r’, ’LineWidth ’, 2);

end
end
xlabel(’1.␣Principal ␣Componens ’); ylabel(’2.␣Principal ␣Component ’);
hold off , grid , axis equal , drawnow;

end
end

% Return figures
perf .it = it;
perf .ll = ll (2:end);
fprintf(’Ok\n’);

function y = logdet(A)
% log(det(A)) where A is positive -definite .
% This is faster and more stable than using log(det(A)).
% U = chol (A);
% y = 2* sum(log(diag (U)));
% Alternativ by Thomas Grotkjær

[U,p] = chol(A);
if ~p

y = 2*sum(log(diag(U)));
else

y = 1;
end
� �

Page 96



B.2 Appendix - MATLAB code for Mixture Models

MATLAB code - Extract from MoG Model

� �

function [s k] = MoG_extract (P_k , mu , sigma2 , covar , N);

% Extract samples from a mixture of Guassians
% -------------------------------------------------------------------------
% Input parameters
% P_k : Priors
% mu : Cluster means
% sigma2 : Covariance matrix
% covar : Type of covariance , ’iso ’, ’diag ’ or ’full ’.
% N : No. of samples to generate
%
% Output parameters
% s : N samples as column vectors
% k : Component membership for each sample
% -------------------------------------------------------------------------

% Initialize
[d K] = size(mu);

% Calc . CDF from P(k) probabilities
cdf_k = P_k (1);
for i=2:K cdf_k(i)= cdf_k(i-1)+ P_k(i); end

% Generate N samples
for i = 1:N

k(i) = length(find (rand (1)> cdf_k ))+1; % Extract random cluster
s_m(:,i) = mu(:,k(i));

% Extract from k’th components depending on type
switch (covar)

case ’full ’
s(:,i) = (randn(1,d) * chol(sigma2(:,:,k(i))) )’ + mu(:,k(i));

case ’diag ’
s(:,i) = randn(d,1) .* sqrt(sigma2(:,k(i))) + mu(:,k(i));

case ’iso’
s(:,i) = randn(d,1) .* sqrt(sigma2(k(i))) + mu(:,k(i));

end
end
� �
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MATLAB code - Extract from MFA Model

� �

function [s k] = MFA_extract (P_k , Lh , psi , mu , N)

% Extract samples from a mixture analyzer
% -------------------------------------------------------------------------
% Input parameters
% P_k : Priors
% Lh : Factor loading matrix
% psi : Vector for diagonal matrix Psi
% mu : Cluster means
% N : No. of samples to generate

% Output parameters
% s : N samples as column vectors
% k : Component membership for each sample
% -------------------------------------------------------------------------

[d dz K] = size(Lh);

% Calc . CDF from P(k) probabilities
cdf_k = P_k (1);
for i=2:K cdf_k(i)= cdf_k(i-1)+ P_k(i); end

% Generate random z
z = randn(dz ,N);
eps = diag (psi)* randn(d,N);

% Generate N samples
for i = 1:N

k(i) = length(find(rand (1)> cdf_k ))+1; % Extract random cluster
s(:,i) = mu(:,k(i)) + Lh(:,:,k(i))*z(:,i) + eps(:,i);

end
� �
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B.3 Appendix - MATLAB code for Deep Networks

MATLAB code - Single layer network (training, testing, extracting features).

� �

function [A, S, W, C, opt , err_c] = NLMF(X, c, d, opt)

% NLMF : NON -LINEAR MATRIX FACTORIZATION
%
% Authors :
% Morten Arngren
% Technical University of Denmark ,
% Institute for Matematical Modelling
%
% Usage:
% [A S C] = NLMF (X, d, opt)
%
% Input:
% X M x N data matrix
% d Number of factors
% opt
% .type Model type :
% - ’uncon ’ for unconstrained model
% - ’nonneg ’ for non -negative model
% .fs Mapping function :
% - ’un2un ’ f_S = tanh (S);
% - ’nn2un ’ f_S = exp(S) ./ (1 + exp(S));
% - ’nn2nn ’ f_S = S ./ (1+S);
% .softmax Incl . classifier
% .C No. of classes
% .alpha Reg. of sources , s
% .beta Reg. of features , A
% .gamma Reg. of class. weights , W
% .sigma2 Balance parameter
% .A Codebook matrix A as input
% .S Sources as input
% .W Class. weight as input
%
% .cost_delta Stop criteria , diff . between cost iterations
% .IT_out Max. no. of iteration , outer loop
% .IT_in MAx. no. of iteratoins , inner loops
% .A_cost_delta Stop criteria , for A, inner loop
% .S_cost_delta Stop criteria , for S, inner loop
% .W_cost_delta Stop criteria , for W, inner loop
%
% .loop Loop inside A,S & W to converge
% .test Test session , learn only S
% .class Run classifier only , for dual sessions
% .plot Plot during learning , slow !

% Output:
% A Features , M x (d+1) matrix
% S Codevectors , (d+1) x N matrix
% W Class. weights , C x (d+1) matrix
% C Cost function values
% -------------------------------------------------------------------------

% Setup arguments if activating class. network only .
if opt.class

opt.softmax = 1;
opt.test = 0;
opt.loop = 1;
opt. W_cost_delta = opt. cost_delta ; % Use S stop . criteria as global
opt.IT_in = opt.IT_out; % Use inner maxIT as global
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opt.A = 0;
end

% Setup arguments if using testset
if opt.test

opt.softmax = 0; % Don ’t optimize W
opt.loop = 1;
opt. S_cost_delta = opt. cost_delta ; % Use S stop . criteria as global
opt.IT_in = opt.IT_out; % Use inner maxIT as global
opt.sigma2 = 1;

end

fprintf(’\n’);
fprintf(’Non -Linear␣Matrix␣Factorization \n’);
fprintf(’========================================\n’);

if strcmp(opt.type , ’nonneg ’) && ~strcmp(opt.fs , ’nn2nn’)
fprintf(’-␣Non -linear␣ mapping␣function ␣f(s)␣forced␣to␣nn2nn\n’);
opt.fs = ’nn2nn’;

end
if strcmp(opt.type , ’uncon’) && strcmp(opt.fs , ’nn2nn’)

fprintf(’-␣Non -linear␣ mapping␣function ␣f(s)␣forced␣to␣un2nn\n’);
opt.fs = ’un2nn’;

end

[M N] = size(X);

% Display information
if ~opt.test

fprintf(’-␣Training ␣on␣%5.0 f␣MNIST␣samples ␣using␣%s␣constraint .\n\n’, N, opt.type );
else

fprintf(’-␣Testing␣on␣%5.0 f␣MNIST␣samples ␣using␣%s␣constraint .\n\n’, N, opt.type );
end
fprintf(’%12s␣|␣%12s␣|␣%12s␣|␣%12s␣|␣%12s␣|␣%12s␣|␣%6s\n’,’Iteration ’,’NuA ’, ...

’NuS’,’NuW’,’Cost ␣func .’,’Delta␣costf.’,’Err_C␣[%] ’);
fprintf(’-------------+--------------+--------------+--------------+-----------\ n’);

rand(’state’,sum (100*clock)); % See random generator

% Initialize model parameters A, W and S
if ~opt.class

S = [1*( rand(d,N)); ones (1,N)];
else S = opt.S; end

if ~opt.test
% A = [ 0.1* X(:,ceil (N*rand (1,d))) zeros(M ,1)]; % Init . with digits
A = 0.1*[rand(M,d) zeros(M ,1)]; % Init . with noise
W = rand (opt.C, d+1);
if strcmp(opt.type , ’uncon’)

A = A - ones (M ,1)* sum(A ,1)/ size(A,1);
S(1:end -1,:) = S(1:end -1,:) - 0.5;
W = W - 0.5;

end
else

A = opt.A; W = opt.W;
end

% Calc . non -linear sources for first iteration
f_S = mapS (S, opt);

% Initialize algorithm parameters
switch opt.type

case ’nonneg’ % Multiplicative stepsizes
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opt.nuA = 1; opt.nuS = 1; opt.nuW = 1;
if opt.class opt.nuW = 1e -3; end

case ’uncon’ % Additive stepsizes
opt.nuA = 1e-3;
opt.nuS = 0.01;
opt.nuW = 0.01;
if opt.test opt.nuS = 1e -2; end

end
opt.accel = 1.3;
cost .E = inf; cost .Ec = inf; cost .Ed = inf; cost_old = inf; delta_cost = inf;
it = 0; err_c = inf;

% Select random digits for viewing during iterations
if opt.plot

id = ceil (N*rand (1 ,20));
end

% Optimization loop
while (it < opt.IT_out && (delta_cost ) >= cost .E*opt.cost_delta )

% Optimize parameters
if (~opt.test && ~opt.class)

[A, cost , opt] = Optmize_A (A, X, S, f_S , cost , opt ); end

if (~opt.test && opt.softmax )
[W, cost , opt] = Optmize_W (W, f_S , c, d, cost , opt ); end

if (~opt.class)
[S, f_S , cost , opt] = Optimize_S (S, A, W, X, c, d, cost , opt); end

if ~opt.test
delta_cost = cost_old - cost .E;

else
delta_cost = 0; % Run outer iteration once for test -error

end
cost_old = cost .E;
it = it + 1;
C(it) = cost ;
[P_c err_c] = Softmax(W, S, c, opt);

% Display information
fprintf(’%12.0f␣|␣%12.6g␣|␣%12.6g␣|␣%12.6g␣|␣␣%11.2f␣|␣␣%11.2f␣|␣␣%4.4 f␣\n’, ...

it ,opt.nuA/opt.accel ,opt.nuS/opt.accel ,opt.nuW/opt.accel ,cost .E, ...
delta_cost , err_c *100);

if opt.plot
view = [A(:,1:min(d ,9)) A(:,d+1) A*f_S(:,id )];
figure(1), showPatch (view , 10, ’single ’); drawnow;
figure(2), showPatch (A, 20, ’all’); title(’Columns␣of␣A’);

end
end
[P_c err_c] = Softmax(W, S, c, opt);
return

% -----------------------------------------------------------------------
function [A, cost , opt] = Optmize_A (A, X, S, f_S , cost , opt)

A_old = A;
loop = 1;

while (loop )
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cost_old = cost ; it = 0;

switch opt.type
case ’nonneg’

% Multiplicative update of A
A_ = (X*f_S ’) ./ (A*f_S*f_S ’ +eps); % Gradient

case ’uncon’
% Additive update of A
A_ = (A*f_S - X)*f_S ’; % Gradient
A_ = A_ + opt.beta *sign(A); % Reg. term

end

while (1)
switch opt.type

case ’nonneg’ % Multiplicative update
A = A_old .* (A_.^ opt.nuA); % Take step

case ’uncon’ % Additive update
A = A_old - opt.nuA*A_; % Take step

end

cost.Ec = .5/ opt.sigma2*norm(X - A*f_S ,’fro’)^2; % Calc . energy as cost
cost.Ec = cost .Ec + opt.alpha*norm(S,1) + opt.beta*norm (A ,1);

if cost .Ec < cost_old .Ec
if ( cost_old .Ec -cost .Ec) < cost .Ec*opt.A_cost_delta % Stop if converged

loop = 0;
else loop = opt.loop ; end
A_old = A;
opt.nuA = opt.nuA*opt.accel; break; % Increase stepsize and exit

else
opt.nuA = opt.nuA /2 + eps;
it = it + 1;
if it > opt.IT_in % Exit if not converged

loop = 0;
A = A_old; % Revert to old A and cost
cost = cost_old ;
break;

end
end

end
end
cost .E = cost .Ec + cost .Ed;
return

% -----------------------------------------------------------------------
function [S, f_S , cost , opt] = Optimize_S (S, A, W, X, c, d, cost , opt)

C = size(W ,1);
S_old = S;
loop = 1;

while (loop )
cost_old = cost ; it = 0;

% Map S through non -linear function f(s)
f_S = mapS (S, opt);
f__S = mapS_(S, f_S , opt ); % Derivative of f(s)

switch opt.type
case ’nonneg’ % Multiplicative update

if ~opt.softmax
S_ = (A’*X) ./ (A’*A*f_S + opt.alpha*opt.sigma2 +eps); % Gradient

else
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exps = exp(W*f_S );
y = exps ./ (ones (C ,1)* sum(exps ));
S_ = A’*X/opt.sigma2 + W(c+1,:)’;
S_ = S_ ./ ( A’*A*f_S/opt.sigma2 + W’*y + opt.alpha ./(f__S +eps ));

end
case ’uncon’ % Additive update

S_ = f__S .* (A’*A*f_S - A’*X); % Gradient
S_ = S_ + opt.alpha*opt.sigma2*sign(S); % Reg. term
if opt.softmax % Softmax

exps = exp(W*f_S );
S_ = S_ + ( ( W’* exps ./ (ones(d+1 ,1)*sum(exps )) - W(c+1,:)’ ) ...

.* f__S )* opt.sigma2;
end

end

% Inner iterating loop
while (1)

switch opt.type
case ’nonneg’ % Multiplicative update

S(1:d ,:) = S_old(1:d ,:) .* (S_ (1:d ,:).^ opt.nuS ); % Take step
case ’uncon’ % Additive update

S(1:d ,:) = S_old(1:d ,:) - opt.nuS*S_ (1:d,:); % Take step
end

f_S = mapS (S, opt);
cost.Ec = .5/ opt.sigma2*norm(X - A*f_S ,’fro’)^2; % Calc . energy as cost
cost.Ec = cost .Ec + opt.alpha*norm (S ,1) + opt.beta *norm(A,1);
if opt.softmax

cost .Ed = - sum(sum(W(c+1,:)’.* f_S )) + sum(log(sum(exp(W*f_S ))));
cost .Ed = cost .Ed + opt.gamma*norm (W ,1);

else cost .Ed = 0;
end

cost.E = cost .Ec + cost .Ed;
if cost .E < cost_old .E

if ( cost_old .E-cost.E) < cost .E*opt.S_cost_delta % Stop if converged
loop = 0;

else loop = opt.loop ; end
S_old = S;
opt.nuS = opt.nuS*opt.accel; break; % Increase stepsize and exit

else
opt.nuS = opt.nuS /2 + eps;
it = it + 1;
if it > opt.IT_in % Exit if not converged

loop = 0;
S = S_old; % Revert to old S and cost
cost = cost_old ;
break;

end
end

end

% Display information
if opt.test

[P_c err_c] = Softmax(W, S, c, opt );
fprintf(’%12.0f␣|␣%12.6g␣|␣␣%11.2f␣|␣␣%4.4f␣\n’, it , opt.nuS/opt.accel , ...

cost .E, err_c);
end

end
return
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% -----------------------------------------------------------------------
function [W, cost , opt] = Optmize_W (W, f_S , c, d, cost , opt)

C = size(W ,1);
N = size(f_S ,2);
W_old = W;
loop = 1;

while(loop )
cost_old = cost ; it = 0;

exps = exp(W*f_S);
y = exps ./ (ones (C ,1)* sum(exps ));
switch opt.type

case ’nonneg’ % Multiplicative update
for i = 1: opt.C

c_id = find(c==i -1);
W_(i ,:) = sum(f_S(:, c_id ),2)’;
W_(i ,:) = W_(i,:) ./ ( sum( (ones(d+1 ,1)*y(i,c_id )) .* f_S(:, c_id) ,2)’ ...

+ opt.gamma*ones (1,d+1));
end

case ’uncon’ % Additive update of W
for i = 1: opt.C

tcfs (i ,:) = sum(f_S(:,find(c==i-1)) ,2) ’;
end
W_ = - tcfs + y*f_S ’ + opt.gamma*sign (W);

end

while (1)
switch opt.type

case ’nonneg’ % Multiplicative update
W = W_old .* (W_.^ opt.nuW); % Take step

case ’uncon’ % Additive update
W = W_old - opt.nuW*W_; % Take step

end
cost.Ed = - sum(sum(W(c+1,:)’.* f_S )) + sum(log(sum(exp(W*f_S ))));
cost.Ed = cost .Ed + opt.gamma*norm(W ,1);

if cost .Ed < cost_old .Ed
if ( cost_old .Ed -cost .Ed) < cost .Ed*opt.W_cost_delta % Stop if converged

loop = 0;
else loop = opt.loop ; end
W_old = W;
opt.nuW = opt.nuW*opt.accel; break; % Increase stepsize and exit

else
opt.nuW = opt.nuW /2 + eps;
it = it + 1;
if it > opt.IT_in % Exit if not converged

loop = 0;
W = W_old; % Revert to old W and cost
cost = cost_old ;
break;

end
end

end
end
cost .E = cost .Ec + cost .Ed;

return
� �
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MATLAB code - Non-linear mapping function, f(s).

� �

function [f_S] = mapS (S, opt)

% Non -linear mapping function f(s)
% -------------------------------------------------------------------------
% Input parameters
% S : Sources
% opt.type : Type of non -linear mapping function
%
% Output parameters
% f_S : Mapped sources
% -------------------------------------------------------------------------

switch opt.fs
case ’nn2nn’

f_S = S ./ (1+S);
case ’un2nn’

f_S = exp(S) ./ (1 + exp(S));
case ’un2un’

f_S = tanh(S);
end

return
� �

MATLAB code - Non-linear mapping function, 1st derivative, f’(s).

� �

function [f__S ] = mapS_(S, f_S , opt)

% 1st order derivatives of non -linear mapping function f(s)
% -------------------------------------------------------------------------
% Input parameters
% S : Sources
% f_S : Mapped sources , f(s)
% opt.type : Type of non -linear mapping function
%
% Output parameters
% f__S : 1st derivative of mapped sources
% -------------------------------------------------------------------------

switch opt.fs
case ’nn2nn’

f__S = (1 - f_S) ./ (S + 1);
case ’un2nn’

f__S = f_S - f_S .^2;
case ’un2un’

f__S = 1 - f_S .^2;
end

return
� �
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MATLAB code - Softmax function

� �

function [P_c err_c] = Softmax (W, S, c, opt)

% Initialization
N = size(S ,2);

% Calc . f(S)
f_S = mapS (S, opt);

% Softmax function
exps = exp(W*f_S);
denom = sum(exps );
for i = 1: opt.C

P_c(i,:) = exps (i,:) ./ denom;
end

% Extract highest prob .
[temp y] = max(P_c);
y = y - 1;

if nargout > 1
% Calc . error rate
err_c = length(find ((c-y) ~= 0)) / N;

end
return
� �
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MATLAB code - Generation of data

� �

function [S, cost , opt] = Generate_S (A, W, c, opt)

% Generate data
% -------------------------------------------------------------------------
% Input parameters
% A : Codebook feature matrix
% W : Class. weight matrix
% c : Target class as vector
% opt.type : Type of maping function , fs)
%
% Output parameters
% f_S : Mapped sources
% -------------------------------------------------------------------------

% Initialize s to unform random elements
d = size(A,2) -1;
N = length(c);
S = 1*rand(d+1,N) -0.5;
S_old = S;
loop = 1;
cost = inf;
stop_id = [];

rand(’state’,sum (100*clock)); % See random generator

while(loop )
cost_old = cost ; it = 0;

% Map S through non -linear function f(s)
f_S = mapS (S, opt);
f__S = mapS_(S, f_S , opt ); % Derivative of f(s)

exps = exp(W*f_S);
S_ = ( (W’* exps ./ (ones (d+1 ,1)*sum(exps )) - W(c+1,:)’) .* f__S );
S_ = S_ + opt.alpha*sign(S);

while (1)
S_(:, stop_id ) = 0; % Remove gradient for already converged digits
S = S_old - opt.nuS*S_; % Take step

cost = - sum(sum(W(c+1,:)’.* f_S)) + sum(log(sum(exp(W*f_S ))));
cost = cost + opt.alpha*norm(S,1);

if cost < cost_old
[y_all err_c] = Softmax (W, S, c, opt );

% Extract p(c|s) for each digit
for i = 1:N

y_c(i) = y_all(c(i)+1,i);
end
stop_id = find(y_c > opt.S_p_c_s ); % Save id for conv . digits

if length(stop_id) == N; % Stop if converged
loop = 0; end

S_old = S;
opt.nuS = opt.nuS*opt.accel; break; % Increase stepsize and exit

else
opt.nuS = opt.nuS /2 + eps;
it = it + 1;
if it > opt.IT_in % Exit if not converged
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loop = 0;
S = S_old; % Revert to old S and cost
cost = cost_old ;
break;

end
end

end
if opt.plot

figure (100) , showPatch (A*mapS (S,opt), min(10,N), ’single ’);
end

end
return
� �
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