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Outline

1 Introduction
I What are these hyperspectral images?
I The linear and convex geometry model.
I Wheat and maize kernel data.

2 Image Acquisition & Processing
I The hyperspectral camera.
I Pre-processing pipeline.

3 The Unmixing Model
I Decomposing wheat and maize kernels.

4 Conclusion and summary.
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Background / Motivation

Hyperspectral image analysis

Introduction

I Classic image analysis is usually conducted on photographes having up to 3
RGB colors, sufficient for visualization.

I Hyperspectral images includes multiple color bands, typically > 50 bands and
thus offers a more detailed analysis.

Figure 1 : Example of hyperspectral image. Each pixel consist of a 150 band spectra.

I Light reflection from sample contains information of material.

I The observed spectra is dominated by a linear mix of pure components.

I The objective is to decompose the image to into these pure spectral signatures.
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Linear modeling and constraints

Linear Modeling
The mixing of the constituents can be approximated linearly as

X = WH + ε, (1)

where W are the spectral signatures, H denote the fractional abundances
(concentrations) and ε is the residual white Gaussian noise.

Constraints

I Non-Negativity, intensities can not be negative :

xi,j ≥ 0 ∧ wi,j ≥ 0 ∧ hi,j ≥ 0 (2)

I Additivity, concentrations must sum to one :
P

i hi,j = 1

Figure 2 : Linear mixing of spectral signature into observed pixel spectra.
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Data Geometry

Convex Geometry Model

I These constraints lead to the following geometry for the 2 component case.

Figure 3 : Simple mixing with only 2 vertices.

I Purple vertices are the basis vertices denoted endmembers.

I Red points inside designate valid observed samples.

I Gray points outside are invalid due to noise (constraints violated).

For multiple endmembers the structure becomes an N-simplex.

Figure 4 : 3- and 4-simplex (image from Wikipedia).

Objective is to locate the vertices as the basis spectral signatures based only on the
observed data (unsupervised learning).
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Grain Kernel Anatomy

Grain Kernel Datasets
Expected identifiable components in grain kernels:

I Starch in endosperm (maize has both horny and floury starch).

I Protein in a matrix structure with starch and in aleurone layer.

I Oil in the germ.

I Background pixels.

Figure 5 : Wheat kernel anatomy. Figure 6 : Maize kernel anatomy with both horny and floury starch.
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Hyperspectral Camera

Image Acquisition
I Hyperspectral line-scan NIR camera sensitive from 900− 1700nm in 165 bands.

I Two datasets: 14 Wheat kernels and 8 Maize kernels (front and backside).

I Data format of each image is a 320× 150× 165 tensor.

I Unfortunately no ground truth reference set, e.g. single kernel protein levels.

Figure 7 : Hyperspectral camera setup. Figure 8 : Grain kernel datasets.
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Pre-Processing Overview

Data Processing Pipeline

Prior to decomposing the hyperspectral data a series of pre-processing steps are taken.

Figure 9 : Pre-processing pipeline.
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Initial Pre-Processing

Initial Pre-Processing
I Remove spectral range: Poor response at 900-950nm & 1650-1700nm

(165 → 145 bands).

I Image correction: White reference and dark current image compensation.

I Line y-axis averaging: 2 × Oversampling.

I Convert to Absorbance.

Figure 10 : White reference and dark current spectra.

I White light source to show poor SNR at spectral edges.

I Spectral dip at 1430nm is due to light guide fiber characteristics.
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Scatter Effects

Scatter effects
I Main contribution to scatter effect appear due to surface structures of grains.

I Different types of scatter removal approaches: MSC, SNV, Detrending (Cubic
Splines, SG-Smoothing etc.), Derivatives etc.

I NIR spectra are very smooth and thus complex detrending can prove fatal as
important spectral information is suppressed.

Figure 11 : Comparison of different antiscatter approaches.
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Grain Kernel Segmentation

Wheat Kernel Segmentation
I Each kernel is cropped into small 26× 44× 145 images.

I Background pixels (black cardboard) are identified by a simple threshold applied
to the 1st PC image.

Figure 12 : Principal component images.

Figure 13 : Segmented wheat kernel images.
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Non-Negative Matrix Factorization with volume regularization

The Unmixing Model
I Linear NMF model X = WH + ε subject to the constraints (2).

I Augmented volume regularization with cost function

E = 1
2
||X−WH||2 + λJW (W) (3)

I Regularization term JW (W) encourages tight volume of simplex around the
observed data points.

Figure 14 : No regularization Figure 15 : Optimal regularization.

I Model parameter λ can be tuned to suppress inherit noise.
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Simulations

Wheat Kernel Dataset
I Constituents successfully identified: Starch, Oil and Background.

Figure 16 : Image components i wheat kernel dataset.

Figure 17 : Pure spectral signatures. Figure 18 : Reference spectral signatures.

I Limitations: High correlation between constituents, mixing profile of
compounds (simplex not filled) and penetration depth (difficult to asses).
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Simulations

Maize Kernel Dataset
I Constituents successfully identified: Starch (Horny & Floury), Oil, Background

and Shadows.

Figure 19 : Image components in maize kernel dataset.

Figure 20 : Image component and spectral signatures.
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Further Work

Advanced Models
Bayesian NMF with volume prior

I Bayesian framework leads to probability distributions providing confidence of
endmember estimate.

Figure 21 : Bayesian volume NMF applied on wheat kernel dataset.

I Achieve variance estimation not acquired by regular NMF.
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Summary

Conclusions
I Hyperspectral images can be decomposed efficiently using NMF algorithms with

volume regularizations.

I Pre-processing of data is important to achieve reasonable decomposition.

I Structure of dataset can set limitations, such as component correlation and
mixing profile.

Near future work
I Incorporate spatial information, e.g. smoothing.
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