Introduction	

The Unmixing Model

Summary 00

Hyperspectral Image Analysis for Visualizing Grain Compounds

Morten Arngren

FOSS Analytical A/S & DTU Informatic

TCD, Sep. 2009

The Unmixing Model

Outline

Introduction

- What are these hyperspectral images?
- The linear and convex geometry model.
- Wheat and maize kernel data.
- Image Acquisition & Processing
 - The hyperspectral camera.
 - Pre-processing pipeline.
- The Unmixing Model
 - Decomposing wheat and maize kernels.
- Conclusion and summary.

Introduction •••• Image Acquisition & Processing

The Unmixing Model

< A

Summary 00

Background / Motivation

Hyperspectral image analysis

Introduction

- Classic image analysis is usually conducted on photographes having up to 3 RGB colors, sufficient for visualization.
- Hyperspectral images includes multiple color bands, typically > 50 bands and thus offers a more detailed analysis.

- Light reflection from sample contains information of material.
- ▶ The observed spectra is dominated by a linear mix of pure components.
- The objective is to decompose the image to into these pure spectral signatures.

Morten Arngren

Hyperspectral Image Analysis for Visualizing Grain Compounds

TCD, Sep. 2009 3/17

Sar

Introduction ○●○○	Image Acquisition & Processing	The Unmixing Model	Summary 00
Linear modeling and co	nstraints		
Linear M	odeling		
The mixing	of the constituents can be approximate	ated linearly as	

$$\mathbf{X} = \mathbf{W}\mathbf{H} + \epsilon,\tag{1}$$

where **W** are the spectral signatures, **H** denote the fractional abundances (concentrations) and ϵ is the residual white Gaussian noise.

Constraints

Non-Negativity, intensities can not be negative :

$$\kappa_{i,j} \ge 0 \qquad \wedge \qquad w_{i,j} \ge 0 \qquad \wedge \qquad h_{i,j} \ge 0$$
 (2)

• Additivity, concentrations must sum to one : $\sum_i h_{i,j} = 1$

Hyperspectral Image Analysis for Visualizing Grain Compounds

Morten Arngren

Hyperspectral Image Analysis for Visualizing Grain Compounds

TCD, Sep. 2009 5/17

Introduction	Image Acquisition & Processing	The Unmixing Model	Summary 00
Grain Kernel Anatomy			
Grain Kerne	el Datasets		

Expected identifiable components in grain kernels:

- Starch in endosperm (maize has both horny and floury starch).
- Protein in a matrix structure with starch and in aleurone layer.
- ▶ Oil in the germ.
- Background pixels.

Figure 5 : Wheat kernel anatomy.

Figure 6 : Maize kernel anatomy with both horny and floury starch.

イロト イポト イヨト イヨト

SOC

The Unmixing Model

Summary 00

Hyperspectral Camera

Image Acquisition

- ▶ Hyperspectral line-scan NIR camera sensitive from 900 1700nm in 165 bands.
- Two datasets: 14 Wheat kernels and 8 Maize kernels (front and backside).
- Data format of each image is a $320 \times 150 \times 165$ tensor.
- ▶ Unfortunately no ground truth reference set, e.g. single kernel protein levels.

The Unmixing Model

Pre-Processing Overview

Data Processing Pipeline

Prior to decomposing the hyperspectral data a series of pre-processing steps are taken.

Morten Arngren Hyperspectral Image Analysis for Visualizing Grain Compounds

Introduction 0000	Image Acquisition & Processing	The Unmixing Model
nitial Pre-Processing		

Initial Pre-Processing

- ▶ Remove spectral range: Poor response at 900-950nm & 1650-1700nm (165 → 145 bands).
- ▶ Image correction: White reference and dark current image compensation.
- Line y-axis averaging: 2 × Oversampling.
- Convert to Absorbance.

Figure 10 : White reference and dark current spectra.

- White light source to show poor SNR at spectral edges.
- Spectral dip at 1430nm is due to light guide fiber characteristics.

< 17 ▶

SOC

Introduction	

The Unmixing Model

Summary 00

Scatter Effects

Scatter effects

- Main contribution to scatter effect appear due to surface structures of grains.
- Different types of scatter removal approaches: MSC, SNV, Detrending (Cubic Splines, SG-Smoothing etc.), Derivatives etc.
- NIR spectra are very smooth and thus complex detrending can prove fatal as important spectral information is suppressed.

Figure 11 : Comparison of different antiscatter approaches.

Introduction 0000 Image Acquisition & Processing

The Unmixing Model

< □ > < 同

Grain Kernel Segmentation

Wheat Kernel Segmentation

- Each kernel is cropped into small $26 \times 44 \times 145$ images.
- Background pixels (black cardboard) are identified by a simple threshold applied to the 1st PC image.

Figure 12 : Principal component images.

Figure 13 : Segmented wheat kernel images.

Hyperspectral Image Analysis for Visualizing Grain Compounds

Introduction	Image Acquisition & Processing	The Unmixing Model	Summary
0000		●○○○	00
Non-Negative Matrix Factoriz	ation with volume regularization		

The Unmixing Model

- Linear NMF model $\mathbf{X} = \mathbf{WH} + \epsilon$ subject to the constraints (2).
- Augmented volume regularization with cost function

$$E = \frac{1}{2} ||\mathbf{X} - \mathbf{W}\mathbf{H}||^2 + \lambda J_W(\mathbf{W})$$
(3)

Regularization term J_W(W) encourages tight volume of simplex around the observed data points.

Figure 14 : No regularization

Figure 15 : Optimal regularization.

• Model parameter λ can be tuned to suppress inherit noise.

Sar

Introduc 0000		Image Acquisition & Pro		The Unmixir ○●○○	g Model	Summary 00
Simulati	ions					
	Wheat Kern ► Constituer	el Dataset nts successfully iden	tified: <i>Starch</i> ,	Oil and Backg	ground.	
	1	2	3	4 R	esidual: E=0.00413939	%
	Ú					
		Figure 16 : Im	age components i w	heat kernel datase	t.	
6.0 8.0 Absorbance 5.0 Absorbance				0.14 0.12 0.12 0.1 0.00 0.00 0.00		

1200

1400

1200 Figure 18 : Reference spectral signatures.

1300 1400 1500 1600

Wavelength [nm]

.∃ . . .

Limitations: High correlation between constituents, mixing profile of compounds (simplex not filled) and penetration depth (difficult to asses).

₹ Nom 0.08 900 1000 1100

1000

1100

1500

 $\exists \rightarrow$

DQC

Introduction	

The Unmixing Model

Simulations

Maize Kernel Dataset

Constituents successfully identified: Starch (Horny & Floury), Oil, Background and Shadows.

Hyperspectral Image Analysis for Visualizing Grain Compounds

Introduction	Image Acquisition & Processing	The Unmixing Model	Summary
0000	00000	○○○●	00
Further Work			

Advanced Models

Morten Arngren

Bayesian NMF with volume prior

Bayesian framework leads to probability distributions providing confidence of endmember estimate.

Figure 21 : Bayesian volume NMF applied on wheat kernel dataset.

Achieve variance estimation not acquired by regular NMF.

Sar

The Unmixing Model

Summary 00

Summary

- Hyperspectral images can be decomposed efficiently using NMF algorithms with volume regularizations.
- Pre-processing of data is important to achieve reasonable decomposition.
- Structure of dataset can set limitations, such as component correlation and mixing profile.

Incorporate spatial information, e.g. smoothing.

Morten Arngren Hyperspectral Image Analysis for Visualizing Grain Compounds

Introduction 0000	Image Acquisition & Processing 00000	The Unmixing Model 0000	Summary ⊙●
	9		

イロト イヨト イヨト イヨト

990