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2 VISUAL CORTEX

1 Introduction

One of many major research areas in mathematical modeling is the topic of visual neuroscience. It deals with
how image-statistics of a natural environment is reflected in the processing of the early visual system in the
human brain. Throughout the literature many attempts have been made to form mathematical models for the
different stages in neurological processing of the input from the retina, to name a few refer to [3], [4] and
[13]. The common understanding is that a great part of the processing can be approximated via simple linear
models.

This report aims to describe the visual neurological processing from a mathematical approach with different
linear decompositions: Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-
Negative Matrix Factorization (NNMF). A small set of simulations will be conducted on natural images and the
results will be analyzed and compared to similar experiments [3] [4].

In section 2 a short description of the visual cortex is given from a signal processing point of view and how this
is related to the three decompositions mentioned above. Afterwards the 3 decomposition models PCA, ICA and
NNMF are presented in section 3, 4 and 5 respectively. A set of simulations on natural images is described in
section 6 and the results related to the visual cortex. Finally the report in concluded in section 7.

2 Visual Cortex

Understanding the sensory neurons of the visual system in the brain has received much attention as a primary
research area in the last many decades. The main approach is attempting to model the sensory processing
with linear modeling based on the statistical properties of the environment. In this section we will try to give
a very short overview of the main issues for the neurological visual processing system based on Simoncelli &
Olshausen [13], Hoyer & Hyvärinen [4] and Hoyer [3].

The visual cortex, also known as the primary visual cor-

Figure 2.1: Physical outline of
the visual cortex.

tex or V1, is part of the neural visual center of the brain
and occupies about one third of the surface of the cere-
bral cortex in humans, illustrated in figure 2.1 1.

The signal path in the brain can be described very shortly
from a macro-perspective point of view. Visual stim-
uli from the natural world enters the eye and is pro-
jected on the retina (photo sensitive backside of the eye)
and from here the Lateral Geniculate Nucleus (LGN) re-
ceives the visual information. The LGN is considered the
primary processor of visual information and together
with the retina, they are thought to eliminate the cor-
relation and remove redundancy in the visual stimuli as
stated by Hoyer & Hyvärinen [4] and Simoncelli & Ol-
shausen [13]. The image data then still contains obvi-
ous structures like lines, edges contours etc. after decor-
relating and thus in terms of efficient coding in the neu-
rons much work is still to be done [13]. We will later
review redundancy reduction in terms of Principal Com-
ponent Analysis (PCA) and show corresponding simula-
tion results.

From here the signal is passed to the visual cortex, which
has different levels of complex processing, denoted V1-

V5. In this context we shall only focus on V1 (primary visual cortex) as the first and most simple of the levels.
1Image taken from http://www.nmr.mgh.harvard.edu/∼rhoge/HST583/doc/HST583-Lab1.html
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3 PRE-PROCESSING

The neurons in V1 can be split up in simple- and complex cells, where the simple cells are thought to perform
some linear filtering of the visual input. The spatial characteristics of these filters (receptive fields) can be
described as having oriented and bandpass features (Hoyer [3] and Simoncelli & Olshausen [13]). Further
neural processing of the sensory input based on the architecture of the visual cortex suggests a hierarchical
organization, where the neurons becomes increasingly selective to more complex image structures [13].

If we focus on V1 of the visual cortex it has been argued by Simoncelli & Olshausen [13] that neural responses
must be statistically independent in order to avoid duplication of information in the neurons and hence for the
coding of information to be efficient. Thus applying the linear Independent Component Analysis (ICA) model
with independence as the constraint to natural images seems justified and results from Hoyer [3] and Simoncelli
& Olshausen [13] gave features similar to those found in receptive fields of simple cells in V1. Similar results
has also been found using Linear Sparse Coding (LSC), where image data is decomposed into a linear model
under the constraint that the components must to be as sparse as possible [3]. In this report we will apply ICA
on natural image data and expect to see similar features comparable with results from Hoyer [3] and Simoncelli
& Olshausen [13].

One fundamental discrepancy of many of the models used in this context is their ability to model negative
components and since neurons can not have negative firing rates [3], these models are not optimal for this
purpose. Instead a non-negative factorization model should be used to constrain the components not to be
negative. Using an extended non-negative model Hoyer has shown very sparse features for B&W image data
[3]. In this context we will focus on Non-Negative Matrix Factorization (NNMF) and show simulated results
expected to be similar those found by Hoyer [3].

To start our analysis, we will give a presentation of Principal Component Analysis.

3 Pre-processing

One of the most simple decompositions is the Principal Component Analysis (PCA), where the dataset X is
transformed onto a set of orthogonal axes (denoted the principal components) based on maximizing 2nd order
information or variance. In this context we will describe PCA as a pre-processing step in terms of whitening
data.

The process of whitening data can be an important step in data analysis, as it allows 1st and 2nd order infor-
mation to be reduced or aligned for datasets from different sources. Whitening is the process of removing any
mean-value from the data, ensuring unity variance and decorrelating the data (i.e. zero covariance). In this
section we describe whitening and the theory behind.

Let us denote the dataset X = {x1,x2, . . . ,xm}, where xj is an n dimensional column vector, i.e. X is an n×m
matrix. In this context, we introduce the expectation operator E(·) as statistical averaging given by

E{x} =
∫ ∞

−∞
xpx(x)dx (3.1)

where px(x) denoted the probability density function for x.

The sample mean μi can easily be determined as the 1st order moment by μi = E{yi}, for i = 1, 2, . . . , n, where
yi in this case is the m-dimensional i’th row vectors of X. As the data xj is usually based on measurements, the
probability density px(x) may not always be known. The mean vector μ = {μ1, μ2, . . . , μn} can in these cases
be approximated empirically by

μ ≈ μ̂ =
1
m

m∑
j=1

xj (3.2)
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3 PRE-PROCESSING

Similarly the covariance is determined by the 2nd order central moment (2nd order moment with zero mean)
by C(xk, xl) = E{(xk − μk)(xl − μl)}, for k, l = 1, 2, . . . , n. For k = l, the covariance becomes C(xk, xk) = σ2

k,
i.e. the variance of xk. The corresponding covariance matrix Σ for n = 2 can be expressed as

Σ =
[

σ2
1 C(x1, x2)

C(x2, x1) σ2
2

]
(3.3)

From the definition of C it is easy to see C(x1, x2) = C(x2, x1) and that Σ is symmetric and always positive
semi-definite. This can similarly be approximated empirically unbiased by

Σ̂ ≈ 1
m− n

m∑
j=1

(xj − μ̂)(xj − μ̂)T (3.4)

With the definition of the covariance matrix, it is easy to see that a white dataset has the identity matrix I as
the covariance matrix, i.e. Σ = I, where the data components have unity variance and zero covariance.

To decorrelate the data X, we decompose the covariance matrix into Σ = UΛUT, which can be re-written to :

Σui = λiui (3.5)

where U holds the orthonormal eigenvectors U = {u1,u2, . . . ,un}, where UUT = I and
diag(Λ) = {λ1, λ2, . . . , λn} is the corresponding set of eigenvalues. Since Σ is always positive semi-definite,
the eigenvalues are always non-negative. Geometrically this can be illustrated as in figure 3.1.

u1u2

2
1

x2

x1

Figure 3.1: Geometric illustration of the eigenvalue decomposition of the data subset X for di-
mensions n = 2. Here the ellipse depicts the constant joint probability density p(x1,x2) and the
eigenvectors u1 and u2 denotes the directions of maximum variance with lengths proportional to
the eigenvalues, λ1 and λ2.

In the eigenvalue decomposition, the orthonormal eigenvectors U denotes the directions of maximum variance
(called the Principal Components) and the corresponding eigenvalues are proportional to their lenghts, refer to
[2].

Decorrelating the data corresponds to a coordinate transformation of the datapoints xi,j using the eigenvectors
U with lengths Λ− 1

2 as basis vectors, i.e. :

zi = Λ− 1
2 UT (xi − μ) = V(xi − μ) (3.6)

By sorting the eigenvectors wrt. eigenvalues in descending order, the dimension of the dataset X can easily be
reduced to d dimensions by projecting the datapoints xi,j onto a subset of the eigenvectors with the d largest
eigenvalues Ud = {u1,u1, . . .ud}, where d < n.

This eigenvalue decomposition can also be achieved by Singular Value Decomposition (SVD), where the data
itself is decomposed into X = UΓVT . Here U (symmetric n × n matrix) and V (symmetric m ×m matrix)
holds the ordered orthonormal eigenvectors for the column and row vectors in X respectively and the diagonal
elements of Γ (n ×m matrix) holds the corresponding shared singular values, refer to [12] for details. From

Page 4



4 INDEPENDENT COMPONENT ANALYSIS

the SVD we can construct a covariance matrix E{XXT } = UΓVT VΓUT = UΓ2UT , which is exactly the
eigenvalue decomposition with Γ2 = Λ. This means the decorrelation can be achieved by :

zi = Γ−1UT (xi − μ) (3.7)

where Γ and U can be reduced in size d < n to obtain dimension reduction of the data.

To illustrate the effect of decorrelation, we have applied PCA to a small set of image data (1000 samples of size
12× 12× 3), which will be described in details in section 6. Figure 3.2 show the scatterplots of the image data
over dimension 1 and 2 and the corresponding 1st and 2nd principal axes after decorrelation.
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Figure 3.2: Left: Scatterplot of un-processed image data for 1st and 2nd dimension. Right: Scat-
terplot of 1st and 2nd principal axes after whitening.

The left illustration of figure 3.2 clearly shows how the image data is strongly correlated since information of
one variable gives information of the other. The dynamic range for image data [0; 255] can also be seen as
the scatterplot is bound from approximately ∼[-100; 150]. The right figure show how the data is uncorrelated
after whitening with unity variance. Information of one variable now gives no information of the other.

The Principal Component Analysis (PCA) presented will also later be applied to image data in terms of sensory
processing in section 6.2, as we shall see.

One of the limitations of PCA is that it is based on 2nd order information only. A different linear decomposition
called Independent Component Analysis (ICA) exploit higher order statistics and is presented next.

4 Independent Component Analysis

In this section we give a short theoretical background for Independent Component Analysis (ICA). Initially we
base the derivation of the algorithm on the negentropy and later relate this to the max. likelihood approach of
ICA. Finally we focus on the practical issues of ICA, namely the usage of the FastICA2 algorithm, refer to [5]
for details.

In some applications a data vector x = {x1, x2, . . . , xn}, where xi is a random variable, can best be described
as a linear composition of statistically independent components, denoted s = {s1, s2, . . . , sn}, i.e. their joint
probability factorize into p(s1, s2) = p(s1)p(s2). If we let the n dimensional vector x denote the data, ICA is
described by the linear model :

x = As (4.1)
2Website: http://www.cs.helsinki.fi/u/ahyvarin/papers/fastica.shtml
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4.1 Negentropy 4 INDEPENDENT COMPONENT ANALYSIS

where the latent variable A denotes the n × n mixing matrix and s = {s1, s2, . . . , sn} are the independent
components. In the pursuit to decompose x, both the components s and the mixing matrix A must be found
under the constraint that the individual components si must be statistically independent.

Let us denote the whitened data by z = {z1, z2, . . . , zn} through linear transformation as given in (3.6), i.e.
z = Vx, where V is an orthogonal whitening matrix. We can then rewrite the ICA linear transform to z = Vx =
VAs = Ãs, where the new mixing matrix Ã becomes orthogonal since E{ÃÃT} = I. We can further isolate
the independent components s = Ã−1z = Wz. This requires matrix inversion of Ã, but this can be avoided by
estimating W directly, as we shall see.

ICA is based on the theory from the Central Limit Theorem, which loosely states that the sum of two independent
random variables are more gaussian than any of the two separately, i.e. Gauss(x1 + x2) > Gauss(x1). In other
words, it is possible to locate an independent component si by maximizing non-gaussianity and for this purpose
different measures for gaussianity exist: Kurtosis (4th order cumulant), Entropy, Mutual Information to mention
a few. In this context we shall use negentropy, a variation of entropy.

4.1 Negentropy

From information theory entropy can be used as a measure of ’gaussianity’ and is defined as

H(x) = −
∫

px(η)log(px(η))dη (4.2)

where x is a random vector with probability density px(x). Compared to kurtosis, the entropy is characterized
by its robustness toward outliers, but can as shown be complicated to calculate.

An important property of the entropy is that for a gaussian distributed variable x, the entropy H(x) is largest
compared to a non-gaussian variable y with same variance, i.e. H(x) > H(y). To ensure a non-negative
measure for non-gaussianity, the negentropy can be used, given by J(x) = H(xgauss)−H(x).

However the negentropy J(x) can be difficult to determine due to the probability density factor px(x) in (4.2).
The most classic approximation of the negentropy is expressed by:

J(x) =
1
12
E{x3}2 +

1
48

kurt(x)2 (4.3)

where the kurtosis kurt(x) is the 4th order cumulant given by kurt(x) = E{x4} − 3(E{x2})2. Unfortunately
kurtosis is sensitive to outliers and hence suffers from robustness. Instead the higher-order cumulants in (4.3)
can be approximated by general non-quadratic functions, G(x). The negentropy can then be written as :

J(x) ∝ [ E{G(x)} − E{G(ν)} ]2 (4.4)

where ν is gaussian variable with zero mean and unity variance. A typical choice for the non-quadratic function
G(x) could be G(x) = a−1

1 log cosh(a1x) as an example, where 1 ≤ a1 ≤ 2. From (4.4) it is clear to see that the
negentropy is maximized when E{G(x)} is maximized.

4.2 Maximizing Negentropy

Next we want to maximize the negentropy J(wT z), where z is the whitened data, i.e. find a vector w, which
maximizes the negentropy and thus locates a independent component si.
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4.2 Maximizing Negentropy 4 INDEPENDENT COMPONENT ANALYSIS

To maximize E{G(wT z)}, we formulate a Lagrange-function F under the constraint of keeping unity variance
E{(wT z)2} = ||w||2 = 1 to ensure whitened data, i.e. F = E{G(wT z)} − λE{(wT z)2} − 1. Using the Karush-
Kuhn-Tucker conditions (refer to [11] for details), we can express the optimal point in terms of the gradient and
constraint as :

∂F
∂w

= E{zg(wT z) + βw} = 0 (4.5)

where g(·) is the derivative of the non-linear function G(·). This expression can be solved by applying Newton’s
method, i.e. as Δw = −[ ∂2F

∂w2 ]−1 ∂F
∂w (refer to [6] for details) and thus the 2nd order derivate Hessian matrix H

can be approximated as :

H =
∂2F
∂w2

= E{zzT g′(wT z)}+ βI (4.6)

This can be further reduced in order to simplify inversion of the Hessian matrix. As the data z is whitened,
we can approximate E{zzT g′(wT z)} ≈ E{zzT }E{g′(wT z)} = E{g′(wT z)}I, i.e. H becomes diagonal and can
easily be inverted. Finally the ICA update iteration can be expressed as :

w← w + Δw = w − E{zg(wT z) + βw}
E{g′(wT z)} + β

(4.7)

where β can be computed from (4.5) as βi = −E{yig(yi)}, where y = Wz.

Using this update iteration (4.7), we can find an independent component si when the direction of the vector w
does not change significantly after an iteration. This approach only finds a single independent component si (a
"one-unit" algorithm) so to locate all the independent components simultaneously as W, we can rewrite (4.7)
into :

W←W + diag(αi)[diag(βi) + E{g(y)yT}]W (4.8)

where α = −1/(E{g′(wTz)} + βi). This does however not prevent us from locating the same component
twice. As mentioned earlier in this section we saw that the mixing matrix Ã is orthogonal and thus W is
also orthogonal since W = Ã−1 = ÃT . This means we can use (4.8) in an symmetric orthogonalization type
approach, where W is orthogonalized after each iteration of (4.8) by :

Ŵ← (WWT )−1/2W (4.9)

where the term (WWT )−1/2 is obtained from the eigenvalue decomposition (WWT )−1/2 = EΛ−1/2ET , where
Λ = diag(λ1, λ2, . . . , λd). From this it is easy to see how Ŵ is orthonormal as the covariance matrix becomes

ŴŴT = ((WWT )−1/2W)((WWT )−1/2W)T = (WWT )−1/2WWT ((WWT )−1/2)T

= (WWT )1/2((WWT )−1/2)T = W1/2(WT )1/2(WT )−1/2W−1/2 = I

Please refer to Hyvärinen [6] for a more detailed description of ICA and negentropy.
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4.3 Max. Likelihood 4 INDEPENDENT COMPONENT ANALYSIS

4.3 Max. Likelihood

In addition to negentropy ICA can also be performed by maximum likelihood, i.e. based on px(x|As), denoted
px(x). Since ICA is a linear transformation x = As, we exploit that the probability density can be written as
px(x) = | det(A−1)|ps(s), refer to appendix A.1 for proof.

Since the components si are independent, we can express the probability density px(x) for the whitened data z

pz(z) = | det(W)|ps(s) = | det(W)|
∏

i

pi(si) = | det(W)|
∏

i

pi(Wz) (4.10)

where W = Ã−1. If we evaluate the probability density pi over T observations of x (or z), we can express the
log-likelihood 	 as :

	(W) = TE{
n∑

i=1

log(pi(wT
i zi))}+ T log | detW| (4.11)

where n is the length of a single observation vector x = {x1, x2, . . . , xn}. Under the assumption that the
independent components s are whitened, it can be proved that the term log | det(W)| is constant (refer to
appendix A.2 for proof) and thus maximizing the likelihood 	(W) reduces to 	(W) = TE{∑n

i=1 log(pi(wT
i zi))}.

If we further choose to approximate the probability density pi(si) with a non-linear function p̃i(si) ∝ cosh−1(si),
the gradient of the log becomes

gi(si) =
∂

∂si
log p̃i(si) =

p̃′i(si)
p̃i(si)

=
− cosh−2(si) sinh(si)

cosh−1(si)
= − sinh(si)

cosh(si)
= − tanh(si) (4.12)

This means maximizing (4.11) can be reduced to the form 	′(W) ≈ E{g(wT z)} and thus the update equation
(4.8) can also be seen as an implementation of max. likelihood. It can further be compared to the Bell-Sejnowski
approach given by ΔW ∝ (I + E{g(y)yT })W (refer to [1] and [6] for details).

This derivation of ICA given in (4.8) is included in the FastICA algorithm (refer to [5]) and will be used later
for the simulations of ICA.

4.4 Discussion

The ICA model given in (4.1) can be interpreted in different ways. In solving a cocktail party problem, where
x are the microphone-recorded signals, the independent sources s are in focus as they more or less remain
constant if the microphone changes position (then the mixing matrix A changes as well). In terms of analyzing
images, the mixing matrix A can be viewed as a constant codebook common for all images and the independent
sources s are the corresponding encoding for each image. The mixing matrix A is therefore more interesting
when analyzing image data.

Having given a short description of the theory behind ICA, a few observations can be seen. As maximizing
non-gaussianity is used to locate independent components, the distribution of the individual data components
can not be gaussian, since maximizing non-gaussianity then fails. This is also derived from the fact that ICA is
based on higher order statistics and since a gaussian distribution is fully described by its mean μ and variance
Σ, ICA can not separate gaussian distributed data.

Note that the ICA decomposition may not guarantee completely independent components s unless the original
data x was in fact a linear mixture of independent components. Still the ICA algorithm can give the linear axes
(columns of mixing matrix A) on which the data is the most independent. In terms of image data, the model
seems to give successful results after all, as we shall see.
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6 SIMULATIONS

5 Non-Negative Matrix Factorization

In certain real world applications, an observed dataset V can best be described as generated exclusively from
adding components and not necessarily being independent. A decomposition into non-negative parts may in
these cases give a more meaningful interpretation conceptually. Classic examples would be an RGB image,
where subcolors (R, G or B) are added constructively to generate a color or it could be wordcount from a
document and so on.

Non-Negative Matrix Factorization (NNMF) seeks to factorize a matrix V = {v1,v2, . . .vm}, where vj is an n
dimensional vector, into a low rank, sparse, non-negative approximation on the form :

V ≈WH (5.1)

where the columns of W = {w1,w2, . . .wr} are the basis vectors and the r ×m matrix H holds the encoding,
where the desired rank r is chosen so that (n + m)r < nm. All matrices in (5.1) are under the constraint not to
include any negative elements.

5.1 Approximating Factors

To find the non-negative factorizations of W and H, the cost function based on Euclidean distance can be
written as :

CLS =‖ V −WH ‖2=
∑
ij

(vij − (wh)ij)2 (5.2)

We can further formulate the update of W and H as to minimize (5.2) by using a gradient descent type
approach expressed as:

Haμ ← Haμ −Δ
∂CLS

∂H
= Haμ + ηaμ[(WT V )aμ − (WT WH)aμ] (5.3)

By setting ηaμ = Haµ

(W T WH)aµ
we can rewrite the update of H and similarly for W to :

Haμ ← Haμ
(WT V )aμ

(WT WH)aμ
Wia ← Wia

(V HT )ia

(WHHT )ia
(5.4)

where the numerically large term (WT WH)aμ and small term (WT V )aμ of the gradient in (5.3) end up in
the nominator and denominator respectively of (5.4) and thus ensures a decrease of the cost function. Note
that if V is non-negative (i.e. contains only non-negative elements), the update of both W and H also remain
non-negative. Refer to [9] and [8] for a more detailed description on the update algorithm on NNMF.

Having presented the theory behind the factorizations PCA, ICA and NNMF, we proceed with simulation results.

6 Simulations

In this section, we present a set of simulations in order to analyze the decomposition of natural color images.
A set of images (example is shown on the front page) by courtesy of Patrik O. Hoyer 3 are subject the following
decompositions :

3http://www.cs.helsinki.fi/u/phoyer/
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6.1 Dataset 6 SIMULATIONS

• Principal Component Analysis

• Independent Component Analysis

• Non-Negative Matrix Factorization

The different simulations are conducted in MATLAB, please refer to appendix B for a list of the code. Before we
present the actual simulation results, a small description of the dataset is given.

6.1 Dataset

Considering the signal path of the visual information, the neurons in the visual cortex ultimately receives their
input from the cones in the retina (color-sensitive part of the eye). The image data should resemble this format
and thus choosing an image database consisting of 20 color images of size 384× 256× 3 in RGB format seems
reasonable. The dataset is constructed by sampling 2500 small image-patches of size 12 × 12 pixel from each
image forming a 12× 12× 3 = 144× 3 = 432 dimensional vector x. This leads to a vector-space representation
of a total of 2500×20 = 50000 column vectors xj in a large data matrix X = {x1,x2, . . .xm}, where m = 50000
and thus X becomes a 432× 50000 data matrix.

Refer to appendix B.2 for details on the MATLAB implementation of constructing the dataset.

6.2 Principal Component Analysis

The first and most simple Principal Component decomposition described in section 3 is applied to the dataset
matrix X. Initially the mean is removed and the corresponding eigenvectors U = {u1,u2, . . . ,ud} are shown
in figure 6.1 for d = 432 dimensions. In case of a dimension reduction d < 432, as we shall see later as part of
ICA and NNMF.

Principal Components

Figure 6.1: The principal components for all 432 dimensions sorted wrt. eigenvalues. Each patch
is normalized to have max. dynamic range for all 3 channels (RGB) for improved visualization.

In figure 6.1 it is clear to see how some principal components are split up in yellow/blue and red/green patches.
This is due to the maximization of variance in PCA, as yellow/blue and red/green are complementary colors.
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6.3 Independent Component Analysis 6 SIMULATIONS

In addition the spatial frequency is increasing as the corresponding eigenvalues (i.e. variance) decreases and
hence the lowest eigenpatches has little contribution and can be considered noise. These features can be com-
pared to 2D Fourier basis functions and also reveals how the eigenpatches does not show distinct sparseness,
as features of high energy and high spatial frequency are mutually exclusive. Only very few patches with high
eigenvalue affect only the luminance and has no color information. In addition a small gray background can
be seen in most patches and is due to the mix of positive and negative contributions (or pixels) achieved with
PCA leading to this zero mean-value. These results were also established by Hoyer & Hyvärinen [4].

To further analyze the color distribution, a few eigenpatches are shown in figure 6.2, where the colors are
projected onto a plane in the colorspace, where R + G + B = constant, i.e. the luminance is ignored. This
makes a hexagon shape, where the center is the all gray spot and the actual colors are spread toward the edges.

Patch 3 Patch 15 Patch 432 Patch 205

Figure 6.2: Color hexagons for different principal components

The first patch 3 has virtually no color information and holds only structural textures and luminance as can
be seen in figure 6.1. Patch 15 and 432 reveals the maximization of variance in PCA, where some of the
eigenpatches are split up in yellow/blue and red/green color information. Patch 432 also shows that even
though the corresponding eigenvalue is the lowest, the patch still holds color and limited texture information
and does not necessarily represent noise. The last patch 205 is very spread in its color information and mainly
holds structural information, which can also be seen from figure 6.1.

In terms of reducing dimensions of a dataset X, the eigenpatches with lowest eigenvalues are neglected in order
to preserve max. amount of information. In this case, the lowest eigenpatches holds mostly yellow/blue and
red/green features with high spatial frequency, but since the eigenvalues are low, these patches represent little
information in dimension reduction. This phenomenon has also been observed in psychological experiments as
stated by Hoyer & Hyvärinen [4] and will also be evident in our later simulations.

Next we present the results from our ICA simulations.

6.3 Independent Component Analysis

ICA based on higher order statistic is capable of extracting image patches, which are mutually independent
as already discussed in section 4. Our derivation of the ICA algorithm assumes whitened data Z and in
conjunction with whitening of the data matrix X into Z, different sizes of dimension reduction is applied,
d = {100, 160, 200, 250}. A similar processing of data is most likely also done in real neurons (Hoyer & Hyväri-
nen [4]). By reducing dimensions of Z, we also lower the computational load and avoid amplifying directions
with small variance, which would decrease the signal-to-noise ratio.

For the simulation we use the FastICA algorithm by Hyvärinen [5]. Part of this implementation includes a
pre-processing step, which can both whiten and reduce dimensions of the data X by use of PCA as described
in section 3. This means we can conveniently use FastICA for all our data-processing steps. We further
choose the approximation of the log-gradient of the probability density function of the independent sources
to be g(si) = tanh(si) and symmetric orthogonalization, as presented in section 4 in order to use the update
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6.3 Independent Component Analysis 6 SIMULATIONS

equation given in (4.8). The function call and implementation of the ICA simulations are shown in appendix
B.1.

As mentioned earlier, the columns of the mixing matrix A = {a1, a2, . . . ,ad} can be seen as "universal" image
components (more about this later) and for dimensions d = 160 and random initial mixing matrix A, these ICA
patches are shown in figure 6.3.

Figure 6.3: The image components for d = 160 dimensions sorted wrt. highest energy. Each patch
is normalized to have max. dynamic range for all 3 channels (RGB) for improved visualization.

From the figure it is clear to see how the image patches has a large group resembling gabor filters. Such
filters, modeled by a Guassian distribution modulated by a complex sine, being very sparse represent the very
basic structural information of an image and can for instance be used in image clustering, refer to [7]. The
gabor filters are all oriented with high bandpass spatial frequencies similar to the responds expected from the
receptive fields in the simple cells of V1, as discussed earlier [13]. The dominance of these bright/dark patches
is mostly due to the dimension reduction performed as pre-processing during whitening of the data [4] and
also shows moderate sparseness compared to PCA with concentrated high energy and high spatial frequency. A
similar result was found by Hoyer & Hyvärinen [4] using ICA and Hoyer [3] and Simoncelli & Olshausen [13]
using a sparseness constrained model.

In addition a small set of color image patches both yellow/blue and red/green can be seen similar to the large
group found under PCA. This only verifies that the max. variance directions are also found in ICA image
decomposition. This group can be considered to form a color system incl. brightness, where the gabor-filter
patches would form a structural group with no color information. In addition color patches are expected to
hold low spatial frequency [4], which can also be seen from figure 6.3.

The fact that most patches are achromatic as they represent mainly brightness information, is also in alignment
with most neurons in V1 respond equally to different colored stimulations [4]. Relatively new studies also
suggests that color-sensitive neurons with orientation do exists, as opposed to they were believed not to be
oriented and that such neurons are expected to have low spatial frequencies [4]. Such patches can also be
found among the image components in figure 6.3.

A few selected patches are also shown in the color hexagon in figure 6.4. Initially the first two patches, 84 and
157, represent the same color patches as we saw under PCA, which holds very little textural information. Most
of the Gabor-like patches has little color contribution evident by patch 11 shown in the figure. Still patch 3 with
Gabor like structures also holds yellow/blue color information and are also ranked with high energy. In PCA a
few patches were mix-patches, i.e. included color, brightness and structural information, whereas for ICA no
mix-patches can be identified.

Next we present the simulation results from the non-negative decomposition.
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6.4 Non-Negative Components 6 SIMULATIONS

Patch 84 Patch 157 Patch 11 Patch 3

Figure 6.4: Color hexagons for different independent component patches.

6.4 Non-Negative Components

For Non-Negative Matrix Factorization, the dataset X is decomposed into non-negative parts as described in
section 5. This means the dataset X can not contain negative elements and hence removing mean via whiten-
ing as a pre-processing step can not be performed. The NNMF algorithm implemented as SNMF2D (refer to
IMM/Toolbox) is applied for different dimensions d = {100, 160, 200, 250}. Figure 6.5 shows the non-negative
patches found for random initial basis matrix W and d = 160 dimensions.

Figure 6.5: Non-negative components for d = 160 sorted wrt. highest energy. Each patch is
normalized to have max. dynamic range for all 3 channels (RGB) for improved visualization.

The collection of non-negative patches are extremely sparse and can not directly be split up in a textural group
and color group, as we could for PCA and ICA. No patches represent color or textural information only can be
identified and all patches are unoriented. In general is hard to identify any perceptual interpretation of the
non-negative patches. A few studies applying the non-negativity constrain on a linear model also shows similar
results [3] [13].

The color hexagons for a few patches are shown in figure 6.6, which shows a typical picture of how the patches
only holds color information for each channel, i.e. R, G or B, whereas only a few represent textural information
alone as shown in the last hexagon. This R, G and B split up is due to the non-negative constraint in NNMF,
since pixels from any patch can not be subtracted by any other and hence the sparsity. This can also be verified
from figure 6.5.

Having presented the simulation results from the three different linear decompositions, we proceed with a small
comparing analysis.
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6.5 Comparing decompositions 6 SIMULATIONS

Patch 26 Patch 54 Patch 43 Patch 21

Figure 6.6: Color hexagons for different non-negative patches.

6.5 Comparing decompositions

Each of the decompositions are linear and can all be written on the form: x = As. The product A and s on the
righthand side can then be interpreted as a codebook (matrix A) and the corresponding encoding (vector s)
for each image patch x.

6.5.1 Sparsity of codebook

One way to evaluate the decompositions is to analyze them with respect to sparsity of the codebook A, i.e.
how sparse are the fundamental patches for each decomposition. To evaluate the sparsity visually a patch from
each decomposition is shown in figure 6.7 (left) as vectors, one for each color channel. In addition the amount
of pixels below a certain threshold is counted for all normalized codebook patches in all three decompositions
and shown in figure 6.7 (right).
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Figure 6.7: Left: Image for each decomposition shown as normalized vectors. Right: Share of
insignificant pixels defined by a threshold of 10% of the max. subpixel strength for each patch.

Comparing the 3 vectors on the left image shows a typical patch for each decomposition. For ICA the gray
area from a Gabor-like patch is clearly seen as an overall bias and the non-negative pixels from NNMF is also
easily spotted. For all patches the right figure reveals how NNMF has the most sparse collection of codebook
patches with an average of 80% even though the curves are extremely noisy. Considering that NNMF can not
include negative values, this makes sense, since the non-negative approach leads to mostly black pixels to avoid
’adding too much’ information. In contrast PCA and ICA can both subtract misplaced information added by
other patches, which is not possible for NNMF.
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6.5 Comparing decompositions 6 SIMULATIONS

6.5.2 Generalization

Viewing the decompositions as a codebook A with corresponding encoding vectors x, as mentioned, means we
can compare the decomposition with respect to generalization by evaluating the ability of the codebooks A to
encode data.

For the analysis, we generate a permanent dataset or testset n × m X by sampling 13440 12 × 12 × 3 image
patches randomly from the same image database as before, yielding an 432× 13440 testset matrix. The MATLAB
code for generating the testset is shown in appendix B.5.

For the purpose of encoding, we use the SNMF2D algorithm (refer to IMM/Toolbox) and prohibit the codebook
matrix A from being updated. This means for the linear model x = As, only s is being updated during the
iterations. As a pre-processing step, we ensure the data is non-negative by adding a bias equal to the minimum
value. In addition the vectors in the codebooks ai are all set to unity length, |ai| = 1 from the different
decompositions, where i = 1, 2, . . . , d.

In our simulations, we have used the range d = {100, 160, 200, 250} as before and for ICA and NNMF we simply
use the corresponding set from previous simulations. For PCA we extract the d largest eigenvectors (that is with
the largest eigenvalue) in order to preserve information. To evaluate the encoding performance, we employ
Mean-Square-Error (MSE) given by :

MSE =
1

nm

m∑
j=1

(xj −As̃j)2 (6.1)

where S̃ = {s̃1, s̃1, . . . , s̃m} is the estimated encoding. The MATLAB code for the simulations is shown in appendix
B.6 and the results are shown below in figure 6.8.
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Figure 6.8: Error curves for the 3 decompositions.

The figure clearly shows a difference in the three decompositions and how NNMF has the best generalization
with an decreasing error slope as the dimensions d increase. For PCA the MSE remain virtually the same, which
proves that dimensions >100 for the eigenvectors contains insignificant information wrt. generalization. For
ICA, the MSE curve is almost constant with small fluctuations considered insignificant. This suggests that the
increase of dimensions for ICA does not contribute to better generalization of the data, as it clearly did for
NNMF.
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7 CONCLUSION

6.5.3 Sparsity of encoding vectors

In conjunction with the linear coding model it would be interesting to evaluate the sparseness of the encoding
vectors s instead of just the codebook matrix A. By calculating the mean of the share of pixels below 10% of
all normalized coding vectors PCA, ICA and NMMF can be compared :

d = 100 d = 160 d = 200 d = 250
PCA 92% 95% 96% 97%
ICA 89% 92% 95% 95%

NNMF 51% 56% 57% 59%

These figures clearly show how the ICA with the independence constraint and the PCA codebook incorporates
a more sparse encoding than NNMF with the non-negativity constraint even though the corresponding mean-
square-error for NNMF is considerably lower.

In general the analysis shows that if the codebook matrix A is sparse then the corresponding encoding vectors
s are non-sparse and vice versa.

7 Conclusion

In our analysis we have given a short introduction to the neural processing of visual information from the retina
to the basic part of the visual cortex from a information processing point of view. In the attempt to make a
qualitative description of the different stages of processing, it is generally assumed that the early stages perform
a type of decorrelation and redundancy reduction of the sensory input. Further studies suggest the subsequent
stages of receptive fields of simple cells in V1 can best be modeled linearly with either independence or sparsity
as the constraints [4] [3] [13].

We have presented the theoretical framework behind 3 major linear decompositions: Principal Components
Analysis (PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NNMF) with the
aim of analyzing these models with the neural processing described in the literature.

A set of simulations based on 20 natural images applied to PCA, ICA and NNMF was conducted. The whitening
and hence decorrelation by PCA gave a set of oriented band-pass 2D fourier basis patches, where most patches
could be grouped in either bright/dark, yellow/blue or red/green features. Similar results were also found by
Hoyer & Hyvärinen [4].

Applying the ICA model showed sparse features resembling oriented gabor filters with high spatial frequency
similar to the responds expected from the receptive fields in the simple cells in V1 [4]. From the NNMF model
we achieved even more sparse features with no immediate perceptual interpretation, where the patches were
split up in either R, G or B colors due to the non-negativity constraint [3].

In general a linear model x = As can also be used for coding data using the matrix A as a codebook. Comparing
the codebooks from the decompositions with respect to sparsity showed how NNMF clearly has the most sparse
features used for encoding image data. This approach also lead to the evaluation of the coding efficiency using
the different codebooks in a linear coding model. In this comparison the NNMF features gave the lowest mean-
square-error and is thus the most efficient wrt. coding. Still a short analysis showed that the NNMF gave the
least sparse encoding vectors compared to PCA and ICA.

Of all the theoretical framework and simulated data presented, this report only covers a very small area in this
highly active research field. With the increasing computational power available we would expect future studies
to cover even more complex neurological processing areas.
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A APPENDIX: PROOFS

A Appendix: Proofs

A.1 Probability density of a linear transformation

If we denote the ICA model by x = As and assume a noise-free environment for the data x, we can express the
likelihood of the data x as

px(x|A, s) = δ(x−As) (A.1)

where δ is the Dirac delta-function. We then marginalize the likelihood over the independent sources s and get

px(x|A) =
∫

px(x|A, s)ps(s) ds =
∫

δ(x−As)ps(s) ds (A.2)

If we apply the rule for marginalizing over delta function
∫

δ(x− vs)f(s) ds = 1
v f(x/v), we can rewrite (A.2)

px(x|A) =
1

| det(A)|ps(A−1x) = | det(W)|ps(s) (A.3)

where W = A−1. This finally means we can express the probability density function of the data px(x) based
on the inverted mixing matrix W and the sources s. Refer to MacKay [10] for further details.

A.2 ICA Log-likelihood function

If we denote the linear ICA model x = As, we can express the whitened data as z = Vx = VAs = Ãs ⇔
s = Ã−1z = Wz.

As the components s are independent, they are also uncorrelated, since for two independent variables s1

and s2, we have E{s1s2} = E{s1}E{s2} (refer to (3.1)), which implies uncorrelatedness as the covariance
cov(s1, s2) = E{s1s2} − E{s1}E{s2} = 0.

This means we can write the covariance matrix for the components as E{ssT } = I = WE{zzT }WT . If we take
the determinant we get

det I = 1 = det(WE{zzT }WT ) = (detW)(det E{zzT })(detWT ) (A.4)

For a given dataset the covariance of the whitened data E{zzT } is constant and hence from the righthand side
of (A.4), we see that the term det(W) must also be constant (provided we whiten our data). Refer to Hyvärinen
[6] for further details.
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B APPENDIX: CODE SECTION

B Appendix: Code Section

B.1 Main function
� �

% Main , for simulating PCA , ICA and NNMF

clear;

path(path , ’D:\ Data \Studie\toolbox\ICA’);
path(path , ’D:\ Data \Studie\toolbox\immoptibox ’);
path(path , ’D:\ Data \Studie\toolbox\FastICA ’);
path(path , ’D:\ Data \Studie\toolbox\SNMF2D ’);

% Initialize
K = 20; % No. of images
N = 25; % No. of patches pr. image
dX = 12; dY = 12; dC = 3; % Image patch size

% Generate image vectors
b = form_image_vectors (K, N, dX , dY , dC);

% PCA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(’Performing ␣PCA ... ’);

% Subtract mean
b = b - repmat(mean(b,2), 1, size(b ,2));

% De -correlate
cov_b = cov(b’,1); % Calc . cor.matrix
[E, D] = eig(cov_b); % Calc . eigenvalues of cor.matrix
X = inv(sqrt(D)) * E’ * b; % Whiten

U = E(:,end: -1:1); % Reverse order of eigenvectors
save PCA_20_2500_c E D;
fprintf(’Ok\n’);

% View patches
figure (10);
show_patch (U, dC , 30, 2);

% Color hexagon
figure(11)

subplot (141) , show_colorhex (U(:,3));
xlabel(’Patch␣3’);
subplot (142) , show_colorhex (U(: ,15));
xlabel(’Patch␣15’);
subplot (143) , show_colorhex (U(: ,432));
xlabel(’Patch␣432’);
subplot (144) , show_colorhex (U(: ,205));
xlabel(’Patch␣205’);

% Scatter plots
figure(12)

subplot (121) , plot(b(1,:), b(2,:), ’ro’); grid;
xlabel(’Dim␣1’); ylabel(’Dim␣2’);
subplot (122) , plot(X(1,:), X(2,:), ’ro’); grid;
xlabel(’PC.␣1’); ylabel(’PC.␣2’);
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B.1 Main function B APPENDIX: CODE SECTION

% ICA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(’Performing ␣ICA ... ’);
% Perform ICA
[b_ICA , A_ICA , W] = fastica (b, ’approach ’, ’symm ’, ’g’, ’tanh ’, ’mu’, ...

1-1e-9, ’lastEig ’, 160);

A_ICA = sort_patch (A_ICA); % Sort patches wrt. highest energy

save ICA_ML_160 b_ICA A_ICA;
fprintf(’Ok\n’);

% View patches
figure (20);
show_patch (A_ICA , dC , 20, 2);

% Color hexagon
figure(21)

subplot (141) , show_colorhex (A_ICA (: ,84));
xlabel(’Patch␣84’);
subplot (142) , show_colorhex (A_ICA (: ,157));
xlabel(’Patch␣157’);
subplot (143) , show_colorhex (A_ICA (: ,11));
xlabel(’Patch␣11’);
subplot (144) , show_colorhex (A_ICA (:,3));
xlabel(’Patch␣3’);

% NNMF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf(’Performing ␣NNMF ...’);

% Non -Negative Matrix Factorization
[W,H] = SNMF2D(b, 160);
W = sort_patch (W); % Sort patches wrt. highest energy

save NMF_160 W H;
fprintf(’Ok\n’);

% View image patches
figure (30);
show_patch (W, dC , 20, 2);

% Color hexagon
figure(31)

subplot (141) , show_colorhex (W(: ,26));
xlabel(’Patch␣26’);
subplot (142) , show_colorhex (W(: ,54));
xlabel(’Patch␣54’);
subplot (143) , show_colorhex (W(: ,43));
xlabel(’Patch␣43’);
subplot (144) , show_colorhex (W(: ,21));
xlabel(’Patch␣21’);

%%%%%% Comparison analysis

% Load patches

Page 20



B.2 Generate image patches B APPENDIX: CODE SECTION

load PCA_20_2500_c ;
load ICA_ML_250 ;
load NMF_250 ;

% Threshold set to 10%
thresh = 0.1;

% Analyze PCA
for i = 1:size(U,2)

v_PCA = U(:,i)/max(abs(U(:,i))); % Unity scaling
s_PCA(i) = length(find (abs(v_PCA) < thresh ))/432; % Share under thresh.

end

% Analyze ICA and NNMF
for i = 1:250

v_ICA = A_ICA(:,i)/max(abs(A_ICA(:,i))); % Unity Scale
s_ICA(i) = length(find (abs(v_ICA) < thresh ))/432; % Share under thresh.
v_NNMF = W(:,i)/max(abs(W(:,i))); % Unity Scale
s_NNMF(i) = length(find (abs(v_NNMF) < thresh ))/432; % Share under thresh.

end

% Pick out a typical sparse vector for each
load ICA_ML_160 ;
load NMF_160 ;
v_PCA = U(:,3)/max(abs(U(: ,3)));
v_ICA = A_ICA (:,90)/ max(abs(A_ICA (: ,90)));
v_NNMF = W(:,33)/ max(abs(W(: ,33)));

% Show patch as line
figure(40)

subplot (321) , plot(v_PCA(1:144) , ’r’); hold on;
subplot (321) , plot(v_PCA (145:288), ’g’);
subplot (321) , plot(v_PCA (289:432), ’b’); hold off;
grid; ylabel(’PCA␣(P␣3) ’); axis ([0 144 -1 1]);

subplot (323) , plot(v_ICA(1:144) , ’r’); hold on;
subplot (323) , plot(v_ICA (145:288), ’g’);
subplot (323) , plot(v_ICA (289:432), ’b’); hold off;
grid; ylabel(’ICA␣(P␣44) ’); axis ([0 144 -1 1]);

subplot (325) , plot(v_NNMF (1:144) , ’r’); hold on;
subplot (325) , plot(v_NNMF (145:288) , ’g’);
subplot (325) , plot(v_NNMF (289:432) , ’b’); hold off;
grid; ylabel(’NNMF␣(P␣33)’); axis ([0 144 0 1]);
xlabel(’Pixel’);

% Sparsity
subplot (122) , plot(s_PCA , ’k’); hold on;
subplot (122) , plot(s_ICA , ’r’);
subplot (122) , plot(s_NNMF , ’b’);
hold off; grid; axis ([0 432 0 1]);
xlabel(’Patch␣no.’); ylabel(’Amount␣of␣ insignificant ␣pixels.’);
legend(’PCA’, ’ICA’, ’NNMF ’);

� �

B.2 Generate image patches
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B.3 Sorting patches wrt. energy B APPENDIX: CODE SECTION

� �

function [b] = form_image_vectors (K, N, dX , dY , dC)

% Initialize
b = zeros(dX*dY*dC , N*K);

% Load images one -by -one
for i = 1:K

% Load image
filename = [’Images\’ num2str(i) ’.tiff ’ ];
Image = imread(filename );
[yImage xImage cImage] = size(Image);

for p = 1:N
% Generate random x and y position for patch
xPos = ceil (( xImage -dX)*rand );
yPos = ceil (( yImage -dY)*rand );

% Extract patch
patch = Image(yPos :yPos +dY -1, xPos :xPos +dX -1, 1:dC );

% Convert to vector
b(:,N*(i -1)+ p) = reshape(patch , dX*dY*dC ,1);

end
end

� �

B.3 Sorting patches wrt. energy
� �

function A = sort_patch (A)

% Sort ICA components by largest energy

% Initialize
A_ORI = A;
E = sum(A_ORI .^2);

% Loop over all patches
for i = 1:size(A, 2)

[Y I] = max(E); % Identify the largest
A(:,i) = A_ORI(:,I); % Copy it to new var.
E(I) = 0; % Set origal to zero to avoid being found again

end
� �

B.4 Viewing image patches
� �

function show_patch (v, dC , X, d)

% Dimensions
dY = sqrt (size(v,1)/ dC );
dX = sqrt (size(v,1)/ dC );

k = 1; dx = d; dy = d;
N = size (v ,2);
Y = ceil (N/X);
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B.5 Generate testset B APPENDIX: CODE SECTION

% Initialize
View = 255* ones (dY*Y+d*(Y+1), dX*X+d*(X+1), dC , ’uint8’);

% Pre -process
vv = v - repmat(min(v), size(v,1), 1); % Add mean to have all non -neg. values
vv = vv ./ repmat(max(vv), size(vv ,1), 1); % Scale to have unity values
vv = uint8 (255*vv); % Convert to uint8 for plotting

% Convert vectors to image patches
for k = 1:N

xPos = (dX+d)* mod(k-1, X)+1 + d;
yPos = (dY+d)* floor((k -1)/ X) + d;

patch = reshape(vv(:,k), dX , dY , dC );
View (yPos :yPos +dY -1, xPos :xPos +dX -1, 1:dC) = patch;

end

% Finally show patches as image
imshow(View );

� �

B.5 Generate testset
� �

% Generates image patches from all images without overlap

clear;

% Intialize
dX = 12; dY = 12; dC = 3; % Size of patches
K = 20; % No. of images
p = 1;

% Load 1st image before loop
Image = imread(’Images \1. tiff ’);
[yImage xImage cImage] = size(Image);

% Initialize
N = floor(xImage/dX) * floor(yImage/dY );
b = zeros(dX*dY*dC , K*N);

% Load images
for i = 1:K

% Load i’th image
filename = [’Images\’ num2str(i) ’.tiff ’ ];
Image = imread(filename );
[yImage xImage cImage] = size(Image);

% Loop over x and y and extract patches
for y = 0: floor(yImage/dY)-1

for x = 0: floor(xImage/dX)-1
yPos = dY*y+1;
xPos = dX*x+1;

% Extract patch
patch = Image(yPos:yPos +dY -1, xPos:xPos +dX -1, 1: dC);
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B.6 Encoding testset with codebook B APPENDIX: CODE SECTION

% Convert to vector
b(:,p) = reshape(patch , dX*dY*dC ,1);
p = p + 1;

end
end

end

% Finally save to file
save All_image_patch b;

� �

B.6 Encoding testset with codebook
� �

%

clear;
path(path , ’/gbar /bohr /home1/s03/s030192/ toolbox/ICA’);
path(path , ’/gbar /bohr /home1/s03/s030192/ toolbox/immoptibox ’);
path(path , ’/gbar /bohr /home1/s03/s030192/ toolbox/FastICA ’);
path(path , ’/gbar /bohr /home1/s03/s030192/ toolbox/SNMF2D’);

% Initialize
K = 20; % No. of images
N = 2500; % No. of patches pr. image
dX = 12; dY = 12; dC = 3; % Image patch size

% Load image data
load All_image_patch ;
load ICA_ML_250 ;

% Non -Negative Matrix Factorization
fprintf(’Starting ␣Encoding ...\ n’);

% Pre -process
W = A_ICA;
W = W - repmat(min(W), 432, 1); % Ensure non -negative data
% W = W ./ repmat(max(W), 432, 1); % Unity length already done from

% FastICA algorithm .
% Arguments to NNMF algorithm
opt.W = W;
opt.const_WorH = 1; % Do not update W, constant codebook
opt. maxiter = 10000;
[W,H] = SNMF2D(b, 250, opt );

save _encode_ICA_250 H W;

fprintf(’Encoding ␣finished ...\ n’);
� �

B.7 Sparseness and Mean-Square-Error
� �

clear;

% Initialize
d = [100, 160, 200, 250]; % Dimensions
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load All_image_patch ; % Load image data

% Mean -Square -Error for PCA
for i = 1: length(d)

load ([’encode/_encode_PCA_ ’ num2str(d(i)) ]);
diff = b - W*H;
e_PCA(i) = sum(sum(diff .^2))/( size(diff ,1)* size(diff ,2));
clear W H;

end

% Mean -Square -Error for ICA
for i = 1: length(d)

load ([’encode/_encode_ICA_ ’ num2str(d(i)) ]);
diff = b - W*H;
e_ICA(i) = sum(sum(diff .^2))/( size(diff ,1)* size(diff ,2));
clear W H;

end

% Mean -Square -Error for NNMF
for i = 1: length(d)

load ([’NMF_ ’ num2str(d(i)) ]);
load ([’encode/_encode_NNMF_ ’ num2str(d(i)) ]);
diff = b - W*H;
e_NNMF(i) = sum(sum(diff .^2))/( size(diff ,1)* size(diff ,2));
clear W H;

end

% Plot MSE curves
figure(1)

plot(d, e_PCA , ’k’, ’linewidth ’, 2); hold on;
plot(d, e_ICA , ’r’, ’linewidth ’, 2);
plot(d, e_NNMF , ’b’, ’linewidth ’, 2);
plot(d, e_PCA , ’ko’);
plot(d, e_ICA , ’ro’);
plot(d, e_NNMF , ’bo’); hold off;
legend(’PCA’, ’ICA’, ’NNMF ’); grid;
xlabel(’Dimensions ,␣d’); ylabel(’MSE’);

% Estimate sparsity
thresh = 0.1; % Threshold of 10%

for i = 1: length(d)
% For ICA
load ([’ICA_ML_ ’ num2str(d(i))]);
for j = 1: length(b_ICA)

s_ICA(j) = length(find (abs(b_ICA(:,j)) < thresh ))/size (b_ICA ,1);
end

% For NNMF
load ([’NMF_ ’ num2str(d(i))]);
for j = 1: length(b_ICA)

s_NNMF(j) = length(find (abs(H(:,j)) < thresh ))/size(H ,1);
end

% Collect mean sparsity
[mean(s_ICA) mean(s_NNMF )]

end
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% Sparsity
thresh = 0.1;

for i = 1: length(d)
% Sparsity for PCA
load ([’encode/_encode_PCA_ ’ num2str(d(i))]); clear w;
H = H - repmat(min(H), size(H,1), 1); % Normalize
H = H ./ repmat(max(H), size(H,1), 1);
for j = 1:size(H,2)

s_PCA(j) = length(find (abs(H(:,j)) < thresh ))/size(H ,1);
end

% Sparsity for PCA
load ([’encode/_encode_ICA_ ’ num2str(d(i))]); clear w;
H = H - repmat(min(H), size(H,1), 1); % Normalize
H = H ./ repmat(max(H), size(H,1), 1);
for j = 1:size(H,2)

s_ICA(j) = length(find (abs(H(:,j)) < thresh ))/size(H ,1);
end

% Sparsity for NNMF
load ([’encode/_encode_NNMF_ ’ num2str(d(i))]); clear w;
H = H - repmat(min(H), size(H,1), 1); % Normalize
H = H ./ repmat(max(H), size(H,1), 1);
for j = 1:size(H,2)

s_NNMF(j) = length(find (abs(H(:,j)) < thresh ))/size(H ,1);
end

% Collect mean sparsity
[mean(s_PCA) mean(s_ICA) mean(s_NNMF )]

end
� �

B.8 Viewing color hexagon

This MATLAB function was kindly provided by Patrik O. Hoyer 4.
� �

function colorhex ( a, dispmode , fname )
% colorhex - generates a color -hexagon plot
%
% SYNTAX:
% colorhex ( a, dispmode , fname );
%
% If a is a column vector , then it is assumed that this is a basis vector ,
% with first the red components , then the green , and finally the blue .
% If a is a matrix with three columns then the columns are assumed to
% contain the red/green/blue values.

global dogray;
global hexsize ;

hexsize = 128;

if strcmp(dispmode ,’gray ’)==1
dogray = 1;

4http://www.cs.helsinki.fi/u/phoyer/
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else
dogray = 0;

end

if nargin==2,
fname = [];

end

% -----------------------------------
% First , we generate the background
% -----------------------------------

if strcmp(dispmode ,’none ’)==0

% Some type of plot coming up
% clf; cla;
% iptsetpref (’ImshowBorder ’,’tight ’);
% subplot (’position ’,[0,0,1,1]);

end

if strcmp(dispmode ,’color’) | strcmp(dispmode ,’gray ’)

if 0
x = rand (3 ,10000)*2 -1;
x = [-1 -1 -1; -1 -1 1; -1 1 -1; -1 1 1; 1 -1 -1; 1 -1 1; 1 1 -1; 1 1 1]’;
x = x-ones (3 ,1)*mean (x);
y = xyz2hex (rgb2xyz(x));
z = xyz2rgb (hex2xyz(y));
keyboard ;

end

% Color plot
[X,Y] = meshgrid( 1: hexsize , 1: hexsize );
XY (:,:,1) = X;
XY (:,:,2) = Y;

XYZ = hex2xyz (XY);
RGB = xyz2rgb (XYZ);

% Some may be outside range , to those we add k*[1 1 1] to get inside
% the colour cube .
dims = size(RGB);
rgb (1,:) = reshape(RGB (:,:,1),[1 dims (1)* dims (2)]);
rgb (2,:) = reshape(RGB (:,:,2),[1 dims (1)* dims (2)]);
rgb (3,:) = reshape(RGB (:,:,3),[1 dims (1)* dims (2)]);

inds1 = find(max(rgb )>1);
vals1 = max(rgb(:, inds1));
rgb(:, inds1) = rgb(:, inds1)-ones (3 ,1)*( vals1 -1);

inds2 = find(min(rgb )<-1);
vals2 = min(rgb(:, inds2));
rgb(:, inds2) = rgb(:, inds2)-ones (3 ,1)*( vals2+1);

RGB (:,:,1) = reshape(rgb (1,:),[ dims (1) dims (2)]);
RGB (:,:,2) = reshape(rgb (2,:),[ dims (1) dims (2)]);
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RGB (:,:,3) = reshape(rgb (3,:),[ dims (1) dims (2)]);

RGB = (RGB +1)/2;
% keyboard ;

imshow(RGB );
% truesize ;
% axis equal;

axis off;

end

% -----------------------------------
% Next , we plot the pixels
% -----------------------------------

if isempty(a)==0

% Normalize so maximum absolute value is 1 (same as in visual.m)
a = a/max(max(abs(a)));

if size (a ,2)==1
a = reshape(a,[size(a ,1)/3 3]);

end
a = a’;

xyz = rgb2xyz (a);
hexspots = xyz2hex(xyz );

if strcmp(dispmode ,’none ’)==0
hold on; plot(hexspots (1,:), hexspots (2,:), ’k.’); hold off;

end
end

if isempty(fname)==0

set(gcf ,’PaperPositionMode ’,’auto ’);
if strcmp(dispmode ,’color’)

% print( gcf , ’-depsc ’, fname );
print( gcf , ’-dtiff’, ’-r300 ’, fname );

elseif strcmp(dispmode ,’gray ’)
print( gcf , ’-deps ’, fname );

end

end

return;

% ---------------------------------------------------------------------------
% rgb / xyz
% ---------------------------------------------------------------------------

function xyz = rgb2xyz( rgb )
xyz = rgbANDxyz ( rgb , ’rgb2xyz ’);
return

function rgb = xyz2rgb( xyz )
rgb = rgbANDxyz ( xyz , ’xyz2rgb ’);
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return

function vout = rgbANDxyz ( vin , whichway )

% Re -arrange data if necessary
if size(vin ,3)>1

mode = 1;
dims = size(vin);
vintemp = vin;
clear vin;
vin (1,:) = reshape(vintemp (:,:,1),[1 dims (1)* dims (2)]);
vin (2,:) = reshape(vintemp (:,:,2),[1 dims (1)* dims (2)]);
vin (3,:) = reshape(vintemp (:,:,3),[1 dims (1)* dims (2)]);

else
mode = 0;

end

% This is the transformation matrix
rg = [ 1 -1 0]/sqrt (2);
by = [-1 -1 2]/sqrt (6);
bw = [ 1 1 1]/sqrt (3);
C = [rg; by; bw];

% Transform (simple linear transform )
if strcmp(whichway ,’rgb2xyz ’)

vout = C*vin;
elseif strcmp(whichway ,’xyz2rgb ’)

vout = inv(C)* vin;
else

error(’Select␣one␣way␣or␣the␣other!’);
end

% Make data into old format again
if mode ==1

vouttemp = vout ;
clear vout ;
vout (:,:,1) = reshape(vouttemp (1,:),[ dims (1) dims (2)]);
vout (:,:,2) = reshape(vouttemp (2,:),[ dims (1) dims (2)]);
vout (:,:,3) = reshape(vouttemp (3,:),[ dims (1) dims (2)]);

end

return

% ---------------------------------------------------------------------------
% xyz / hex
% ---------------------------------------------------------------------------

function vout = xyz2hex( vin )

% Universal constant !
global hexsize ;

% Re -arrange data if necessary
if size(vin ,3)>1

mode = 1;
dims = size(vin);
vintemp = vin;
clear vin;

Page 29



B.8 Viewing color hexagon B APPENDIX: CODE SECTION

vin (1,:) = reshape(vintemp (:,:,1),[1 dims (1)* dims (2)]);
vin (2,:) = reshape(vintemp (:,:,2),[1 dims (1)* dims (2)]);
vin (3,:) = reshape(vintemp (:,:,3),[1 dims (1)* dims (2)]);

else
mode = 0;

end

% Transform (direct projection )
vout = (vin (1:2 ,:)/4+0.5)* hexsize ;

% Make data into old format again
if mode ==1

vouttemp = vout ;
clear vout ;
vout (:,:,1) = reshape(vouttemp (1,:),[ dims (1) dims (2)]);
vout (:,:,2) = reshape(vouttemp (2,:),[ dims (1) dims (2)]);

end

return

function vout = hex2xyz( vin )

global dogray;

% Universal constant !
global hexsize ;

% Re -arrange data if necessary
if size(vin ,3)>1

mode = 1;
dims = size(vin);
vintemp = vin;
clear vin;
vin (1,:) = reshape(vintemp (:,:,1),[1 dims (1)* dims (2)]);
vin (2,:) = reshape(vintemp (:,:,2),[1 dims (1)* dims (2)]);

else
mode = 0;

end

p1 = [0 1.6330];
p2 = [1.4142 0.8165];

p4 = p1 -p2;
p4 = [p4(2) -p4 (1)];
p4 = p4/norm(p4);
p4 = (p2*p4 ’)*p4;
p4 = [p4 0];
p5 = [-p4(1) p4 (2) 0];
p6 = [1.4142 0 0];

p4norm = norm(p4);
p5norm = norm(p5);
p6norm = norm(p6);

p4 = p4/p4norm;
p5 = p5/p5norm;
p6 = p6/p6norm;
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%p4norm = p4norm *0.90;
%p5norm = p5norm *0.90;
%p6norm = p6norm *0.90;

% Inverse transform
vout = [(vin/hexsize -0.5)*4; zeros(1,size (vin ,2))];

% Set values outside hexagon to white
outindices = find(abs(p4*vout )>=p4norm | abs(p5*vout )>=p5norm | ...

abs(p6*vout )>=p6norm );

inindices = find(abs(p4*vout )<p4norm & abs(p5*vout )<p5norm & ...
abs(p6*vout )<p6norm);

vout (1, outindices )=0;
vout (2, outindices )=0;
vout (3, outindices )=sqrt (3);

% If doing gray , set everything to gray !
if dogray

vout (:, inindices )=0;
end

% Make data into old format again
if mode ==1

vouttemp = vout ;
clear vout ;
vout (:,:,1) = reshape(vouttemp (1,:),[ dims (1) dims (2)]);
vout (:,:,2) = reshape(vouttemp (2,:),[ dims (1) dims (2)]);
vout (:,:,3) = reshape(vouttemp (3,:),[ dims (1) dims (2)]);

end

return
� �
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