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ABSTRACT

In hyperspectral image analysis the objective is to unmix

a set of acquired pixels into pure spectral signatures (end-

members) and corresponding fractional abundances. The

Non-negative Matrix Factorization (NMF) methods have re-

ceived a lot of attention for this unmixing process. Many of

these NMF based unmixing algorithms are based on spar-

sity regularization encouraging pure spectral endmembers,

but this is not optimal for certain applications, such as foods,

where abundances are not sparse. The pixels will theoreti-

cally lie on a simplex and hence the endmembers can be es-

timated as the vertices of the smallest enclosing simplex. In

this context we present a Bayesian framework employing a

volume constraint for the NMF algorithm, where the poste-

rior distribution is numerically sampled from using a Gibbs

sampling procedure. We evaluate the method on synthetical

and real hyperspectral data of wheat kernels.

1. INTRODUCTION

Traditional image acquisition and analysis is based on three

color bands, red, green, and blue, which is sufficient for hu-

man visualization. In the context of identifying or extracting

material constituents of e.g. foods, three channels are rarely

enough.

Hyperspectral image analysis offers the opportunity to

capture detailed spectral information for improved image

analysis. Each of the observed pixels can be considered a

mix of latent pure constituents. In foods, these constituents

are typically protein, starch, H2O, etc. The non-negative

spectral signatures of these pure constituent are denoted end-

members. Each pixel also has a set of corresponding con-

centrations denoted fractional abundances, which are non-

negative and must sum to one (additivity constraint). In a

reflectance acquisition system the mixing can be considered

linear according to Lambert-Beer’s law. Non-linear mix-

ing are usually neglected due to minor significance and in-

creased modeling complexity [2].

Figure 1 illustrates a hyperspectral image of a wheat

kernel with a corresponding pre-processed spectrum from

950 − 1650nm.
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Fig. 1. Pseudo RGB image of a wheat kernel and the asso-

ciated pre-processed spectrum for the selected pixel.

If we denote the N observed M dimensional spectra as

the matrix X ∈ R
M×N , the linear mixing can be expressed

as a K rank linear factorization written as

X = WH + ǫ, (1)

where the K non-negative endmembers are contained in

W ∈ R
M×K
+ , H ∈ R

K×N
+ holds the fractional abundances

and ǫ denote the residual noise. The objective of spectral un-

mixing is to decomposition the pixels in order to extract the

latent endmembers W and corresponding fractional abun-

dances H.

The non-negativity and sum-to-unity assumption of H

implies a multidimensional simplex structure of the mod-

eled data, where the vertices denote the endmembers. The

observed data may not span the entire simplex due to the

mixing of the constituents. For food applications pure end-

members appear rarely as the observed pixels are almost

always a mix of constituents. This means the observed data

will concentrate around the center of the simplex and very

few samples can be expected at the vertices. The data ac-

quisition is further subject to additive noise and thus the

simplex structure will not be perfect. Figure 2 illustrates

the simplex structure of wheat kernel image pixels. To un-

mix the hyperspectral image data, different approaches can

be used. One approach is to analyse the data using convex

geometrical methods. Plaza et. al. (2004) [9] gives a com-

parative analysis of a set of endmember extraction methods
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Fig. 2. Scatterplot of 1st, 2nd and 3rd principal component

of the processed wheat kernel hyperspectral data.

based on geometrical analysis.

As the acquired data is non-negative by nature the Non-

negative Matrix Factorization (NMF) has received much at-

tention [8, 6, 7, 4]. The basic linear NMF model minimizes

the squared error ||X − WH||2 subject to non-negativity

constraint on the elements W and H. This is however rarely

sufficient to capture the endmembers in an unmixing prob-

lem and thus additional regularization is required. This can

be expressed as part of the cost function as

C(W,H) = 1
2 ||X− WH||2 + γJw(W) + βJh(H), (2)

where Jw(W) and Jh(H) denote the regularization terms

for the endmembers and fractional abundances respectively.

Sajda et. al. [10] develop an NMF algorithm with addi-

tional constraints on the amplitude of the estimated spectral

components, with improved endmember determination. An

L2-norm sparsity prior on both the endmembers W and the

fractional abundances H is incorporated by Pauca et. al. [8]

also leading to improved estimation of the endmembers. A

sparsity prior on the fractional abundances encourages pure

spectra among the observed pixels, but this is rarely the case

in foods and hence the sparsity prior is not useful.

Instead a prior can be based on the volume of the sim-

plex. For a K-simplex in M-dimensional space for K = M

and with vertices {w0,w1, . . . ,wM} the volume is given

by Vsimplex = 1
K! det(W̃), where W̃ = [w1 − w0 w2 −

w0 . . .wM −w0] denote the vectors spanning the simplex.

In our case K << M and thus the simplex volume can be

expressed as

Vsimplex = 1
K! | det(W̃T

W̃)|1/2 (3)

The simplex volume can be approximated by different

means: Miao et. al. [3] present an NMF algorithm that

incorporates the following volume regularization (denoted

mvc)

Jw(W) ∝ det2
(

C + BU
T
x (W − µ)

)

, (4)

where Ux is a projection matrix defined as the K−1 princi-

pal components of the observed data X; µ denote the mean

of X; and B and C ensure a square matrix for the deter-

minant. This volume regularization captures the volume of

the centered simplex in the subspace defined by the K − 1
eigenvectors. This approach is intuitive, but because of its

dependency on the observed data it does not have an inter-

pretation as a prior in a Bayesian framework.

A different volume regularization is proposed in Schacht-

ner et. al. [11] based on the volume of the parallelepiped

spanned by the endmembers. Based on this, the authors

present a regularized NMF multiplicative update algorithm.

The regularization is based on the determinant of the es-

timated endmembers expressed for the non-square case of

W as (denoted pp)

Jw(W) = det(WT
W). (5)

This regularization can be seen as a direct approximation of

(3), where the absolute vectors W are used instead of the

simplex spanning vectors W̃. The omission of the square

root leads to non-linear regularization, where large volumes

will be penalized harder than small volumes. This regular-

ization can be interpreted as a prior in a Bayesian frame-

work, as it avoids the dependency to the observed data. It

however suffers from including an offset mean µw leading

to potential movement toward origo when minimizing the

volume.

As opposed to regularized least squares, a different ap-

proach is to build a Bayesian framework for hyperspectral

unmixing. This allows to define appropriate likelihood and

prior distributions equivalent to the NMF formulation and

to extract confidence intervals on a MAP estimate. In Ochs

et. al. [5] a Bayesian Spectral Decomposition (BSD) algo-

rithm is introduced based on an atomic prior. Moussaoui et.

al. [4] present a Bayesian approach to separate non-negative

mixtures of NIR data based on a hybrid Gibbs-Metropolis-

Hastings sampling procedure. Schmidt et. al. [12] develop

a Bayesian NMF based on a exponential sparsity prior and

inverse gamma hyper priors.

In this paper we present a Bayesian NMF method with

a volume prior for unmixing hyperspectral images. Our

proposed method incorporates a determinant based prior in-

spired by the pp volume in (5). The additivity constraint on

the fractional abundances is modeled as a uniform prior on

the unit simplex. For inference in the model, a fast Gibbs

sampling procedure is devised.

For comparison to our proposed Bayesian approach, the

volume regularization terms mvc in (4) and pp in (5) is im-

plemented in a projected gradient NMF framework. The

additivity constraint is not included in the work of Schacht-

ner et. al. [11] and is implemented as a soft-constraint by

Miao et. al. [3] in their algorithm. This leads to a trade-off

between describing the observed data and respecting the ad-

ditivity constraint. In our projected gradient framework the

additivity constraint is implemented with a variable substi-

tution approach, which always fullfills the additivity con-

straint without sacrificing the description of the observed

data. We evaluate the methods on artificial and real hyper-

spectral food image data.



In section 2 we present our Bayesian volume constrained

NMF model as well as the Gibbs sampler. The synthetic and

real data are described in section 3 with a short description

of the initial pre-processing. Finally, in section 4 we evalu-

ate how the proposed method can extract the true endmem-

bers and corresponding fractional abundances, and compare

to existing methods.

2. BAYESIAN NMF WITH VOLUME PRIOR

We here present a probabilistic Bayesian formulation of NMF

with a prior that constrains the volume of the data simplex.

We model the joint probability distribution of the endmem-

bers, W , and the fractional abundances, H , as well as the

noise, conditioned on the observed data, X , and a set of

model hyper-parameters, Θ. To this end we must choose

a suitable noise model as well as reasonable prior distribu-

tions over all parameters in the model.

We model the noise, ǫ, as independent and identically

distributed white Gaussian noise,which gives rise to the fol-

lowing likelihood function,

p(X|W , H,Θ) =

N
∏

n=1

M
∏

m=1

N
(

xmn|Wm:H :n, σ2
)

,

(6)

where N (x|µ, σ2) = 1√
2πσ

exp
(

(x−µ)2

−2σ2

)

is the Gaussian

probability density function.

In our notation, matrices are denoted by capital bold let-

ters. A matrix with two subscripts denotes the submatrix

with the corresponding rows and columns, where a colon

denotes all indices, and m̃ denotes all indices except m; a

single element is denoted by xmn.

The likelihood has a single parameter, the noise vari-

ance, σ2, for which we choose an conjugate prior, i.e., an

inverse-Gamma distribution,

p(σ2) = IG(σ2|α, β) =
βα

Γ(α)

(

1

σ2

)α+1

exp

(

−
β

σ2

)

.

(7)

We choose a prior distribution for the endmembers, that en-

courages the simplex spanned by the estimated endmem-

bers to be small. We base this prior on a determinant cri-

terion, similar to [11], that measures the volume of the par-

allelepiped spanned by the endmembers. Furthermore, the

prior includes the constraint that each element in the end-

member matrix must be non-negative,

p(W |Θ) ∝

{

exp
(

− γ det(W⊤W )
)

wmk ≥ 0
0 otherwise.

(8)

The prior has a single parameter, γ, that determines the

strength of the volume penalty. This parameter could pos-

sibly be modeled hierarchically; however, presently we set

the parameter by hand.

For the fractional abundances, the prior must enforce

non-negativity as well as the constraint that the abundances

for each pixel must sum to unity. We choose a uniform prior

on the unit simplex,

p(H|Θ) ∝











1 hkn ≥ 0,

K
∑

k=1

hkn = 1

0 otherwise.

(9)

2.1. Gibbs sampler

Inference in the proposed probabilistic NMF model can be

conducted using a Gibbs sampling procedure, in which we

sequentially draw samples from the posterior conditional

distribution of each parameter of the model. Due to our

choice of priors, we can sample from all conditional dis-

tributions directly using standard methods, which obviates

slow sampling procedures such as rejection sampling.

The conditional distribution of the noise variance is an

inverse-Gamma,

p(σ2|X, θ\σ2) = IG(σ2|ᾱ, β̄) (10)

ᾱ = α +
1

2
NM − 1

β̄ = β +
1

2

M
∑

m=1

N
∑

n=1

(xmn − Wm:H :n)2 .

(11)

The conditional distribution of the endmembers, which

arises from the product of the Gaussian likelihood and the

determinant-based prior, is a truncated Gaussian density,

p(wmk|X, θ\wmk) ∝
{

N (wmk|µ̄mk, σ̄2
mk) wmk ≥ 0

0 otherwise
(12)

σ̄−2
mk = (Hk:H

⊤
k:)σ

−2 + γ
(

Dk̃k̃ − Wmk̃Ak̃k̃W⊤
mk̃

)

(13)

µ̄mk = σ̄2
mk

(

(

Wmk̃Ak̃k̃W⊤
m̃k̃

Wm̃k

)

γ+

(

Xm:H
⊤
k: − Wmk̃H k̃:H

⊤
k:

)

σ−2
)

(14)

where Dk̃k̃ = det(W⊤
:k̃

W:k̃) and Ak̃k̃ = adj(W⊤
:k̃

W:k̃).
Samples from the truncated Gaussian distribution can be

generated, e.g., using the method described by Geweke [1].

The conditional density of the fractional abundances is

a constrained truncated Gaussian,

p(H :n|X, θ\H :n) ∝










N (H :n|µ̄n, Σ̄n) hkn ≥ 0,

K
∑

k=1

hkn = 1

0 otherwise

(15)



µ̄n = (W⊤W )−1W⊤X :n, Σ̄n = σ2(W⊤W )−1. (16)

In the remainder of our paper we denote the Bayesian

framework presented BayesNMF-Vol.

3. DATA ACQUISITION AND PRE-PROCESSING

The hyperspectral image data was acquired using a line-

scan NIR camera from 900-1700nm in 165 bands leading

to a data cube of 320× lines× 165. Prior to the image data

being subjected to our unmixing algorithm a series of pre-

processing steps were carried out. Initially, the raw image

data was compensated for white reference and dark current

background spectra in order to remove light source char-

acteristics and sensor offset. Because the camera sensor

has very poor signal-to-noise ratio from 900 − 950nm and

1650 − 1700nm, these ranges were removed. In order to

suppress noise, each line was scanned twice and averaged.

Afterwards, each spectra was converted to absorbance in or-

der to obey Lambert-Beer’s law.

For reference we acquired spectra of pure food con-

stituents, protein, starch and oil, using the camera system

and pre-processed as described. Figure 3 illustrates the spec-

tra for these pure compounds.
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Fig. 3. Normalized spectra of pure basic food constituents.

The water spectrum may suffer from poor SNR as H2O has

extremely high absorbtion rates from 1400− 1700nm.

For our analysis, hyperspectral images of four wheat

kernels were acquired on both front and back side leading

to eight images. These images were pre-processed as de-

scribed, and corrected for scatter effects. As sparse spec-

tral peaks are not prominent in NIR data, low order scat-

ter correction was applied as the residual from a first order

polynomial fit. This approach preserves the simplex struc-

ture. The pure background pixels were then identified and

removed from the data set, leaving a few around the kernel

periphery. This segmentation was achieved by discriminat-

ing the first principal component applied on the reflectance

data. Afterwards, the individual kernels were cropped. The

final hyperspectral image data set was then represented as

an unfolded matrix, X ∈ R
M×N , where each M dimen-

sional column vector x is a pre-processed spectrum of a

pixel. Figure 4 shows the pre-processed kernels prior to the

background segmentation.

Fig. 4. Pseudo RGB image of wheat kernels 1-4 with pair-

wise front and backside.

4. SIMULATIONS

The two volume constrained NMF methods were evaluated

in a set of simulations using synthetic data with different

profiles and known labels. Afterwards our BayesNMF-Vol

model was applied to real hyperspectral image data of wheat

kernels.

4.1. Synthetic data

A synthetic dataset was produced by forming a 3-simplex

in 3 dimensions based on randomly generated endmembers

W. Based on these endmembers, 100 samples were gen-

erated with full mixing profile and a noise variance σ2 =
10−3. This leads to a data matrix X of 3 × 100 illustrated

in figure 5.
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Fig. 5. Scatter plot of the synthetic data, 1st and 2nd PC.

Circles denote datapoints and crosses denote endmembers.

Both the mvc, the pp regularized and the BayesNMF-

Vol NMF algorithms were evaluated by applying the syn-

thetic dataset to find their endmember MAP estimate Wmap

for different values of the regularization parameter γ. The

posterior mode estimate was computed for the BayesNMF-

Vol method. All algorithms were initialized from randomly

selected observed data points. A small range of regular-

ization parameter values γ = {0, .01, .02, .05, .1, .2, .5, 1}
were applied and the resulting scatter plots are shown in

figure 6.

The plots depict the converged endmember estimates

for all three approaches. The models successfully capture

the data structure and increasing regularization encourages



smaller volumes. The advantage of our Bayesian model is

that it allows us to estimate the full posterior producing con-

fidence measures. The posterior mode estimates are further

comparable with the performance of the two projected gra-

dient NMF methods. In addition, the pp regularization indi-

cate superior convergence properties, both in terms of sig-

nificantly fewer iterations and slightly improved endmem-

ber estimate in average.
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Fig. 6. Scatter plots of the observed data and the corre-

sponding estimated endmembers for all 3 methods.

4.2. Wheat kernel data

A wheat kernel consists of many different constituents, where

the majority is H2O, starch, protein and oil, i.e. we expect

to extract 4 − 5 endmembers incl. background in our anal-

ysis. A set of reference concentrations for the compounds

(typically protein) were unfortunately not available, so we

are forced resort to subjective evaluation of the unmixing.

The 4 kernels may also suffer from only small variations in

the protein level between the pixel, i.e. strong correlation

with other constituents. In such case the spectral profile of

protein is almost impossible to extract. The corresponding

PCA scatterplots of the wheat kernel pixels data indicate a

simplex structure of 3-4 components (not shown).

The BayesNMF-Vol algorithm was initialized with pp

regularized NMF endmember estimates in order to avoid

long burn-in periods. A proper prior parameter was simi-

larly found through empirical experiments. Figure 7 shows

the estimated posterior mode endmembers and their spec-

tral profiles for 10000 samples, K = 3 endmembers and

γ = 30. A single decomposed wheat kernel is illustrated in

figure 8.
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Fig. 7. Successful encapsulation of wheat kernel data. Note

the burn-in samples on the right top illustration. The ex-

tracted spectral profiles, where the 2nd (green) is easily

identified as starch comparing to figure 3.

Initially the background has been extracted by the model

as the 3rd component. The starch spectral profile has also

been identified very clearly along with a spatial distribution.

Similarly the oil in the germ part can be identified primarily

from the spatial distribution.

1 2 3 Residual

Fig. 8. Decomposition of backside of wheat kernel 3 (6th

kernel in figure 4).



4.3. Discussion

All the volume based NMF methods described suffer from

high sensitivity to the number of components, K . If K is too

large, excessive components are typically split up in two.

The volume prior p(W) based on (5) has a fatal sensi-

tivity to linear dependencies among the estimated endmem-

bers leading to a collapsing volume. This can occur if the

estimated amount of components K is higher than the true,

where any excess endmember potentially fails to model the

simplex. It can also occur for strong regularizations, i.e.

large value of γ, leading to a collapse of the volume, as it is

never allowed to expand and capture the data.

The experiments further reveal a high sensitivity to ini-

tializations as a bad start guess may require a temporary

higher volume for rotation in order to settle correctly de-

pending on data structure. If the volume prior p(W) is set

to penalize high volumes, then we might get stuck in a local

minimum.

In addition our BayesNMF algorithm indicate a latent

regularization on the estimated endmembers. For a flat prior

distribution p(W) with γ = 0, the BayesNMF-Vol still

exhibit a small regularization encouraging small volumes.

This means the observed data structure can not be encapsu-

lated entirely. This effect is subject to further investigation.

The preliminary empirical analysis can easily be extended

to more complex datasets in order to reveal a more detailed

performance map in terms of large datasets with different

mixing and noise profiles.

5. CONCLUSION

We have proposed a Bayesian NMF model employing a vol-

ume based prior more suitable for hyperspectral image anal-

ysis of foods. Using a synthetic data set our model indicate

improved or similar unmixing performance compared to ex-

isting volume regulated NMF models.

Our BayesNMF-Vol model further extracts confidence

intervals to the MAP estimate in terms of sampling variance.

Limitation to the performance of our model has also

been identified and further research will focus on improv-

ing the framework.
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