Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000	O	0000	000	00

Bayesian Non-Negative Matrix Factorization with Volume Prior

Morten Arngren[†]°, Mikkel N. Schmidt[‡] and Jan Larsen[†]

DTU Informatics^{\dagger} / University of Cambridge^{\ddagger} / FOSS Analytical A/S^{\circ}

ISP, Aug. 2009

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000	O	0000	000	00
Outline				

- Introduction to hyperspectral image analysis.
 - The linear model and the constraint.
 - The convex geometry model.
 - ►
- The NMF model with volume regularizations.
 - Simulation results.
- ► Baysian NMF with volume priors.
 - Simulation results.

Introduction 000	Dataset O	NMF Model 0000	Bayesian NMF 000	Summary 00
1	Introduction			
	 Background / I 	Motivation		
	 Linear modeling 	g and constraints		
	• Data Geometry			
2	Dataset			
-	• Hyperspectral (Camera		
3	NMF Model			
	 Non-Negative N 	Matrix Factorizatio	on with volume	
	regularization			
	 Simulations 			
	 Simulations 			
4		1		
	• The NIVIF mode	el		
	 Simulations 			

Simulations

5 Summary

1

< A

590

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000				
Background / Motivation				

Hyperspectral Image Analysis

Introduction

- Classic image analysis is usually conducted on photographes having up to 3 RGB colors, sufficient for visualization.
- Hyperspectral images includes multiple color bands, typically > 50 bands and thus offers a more detailed analysis.

Figure 1 : Example of hyperspectral image. Each pixel consist of a 150 band spectra.

► The

- The observed spectra is a mix a set of pure components in the subject, dominated by a linear mixture.
- The objective is hence to decompose the image to into these pure spectral signatures.

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000				
Background / Motivation				

Hyperspectral Image Analysis

Introduction

- Classic image analysis is usually conducted on photographes having up to 3 RGB colors, sufficient for visualization.
- Hyperspectral images includes multiple color bands, typically > 50 bands and thus offers a more detailed analysis.

Figure 1 : Example of hyperspectral image. Each pixel consist of a 150 band spectra.

- The
- The observed spectra is a mix a set of pure components in the subject, dominated by a linear mixture.
- The objective is hence to decompose the image to into these pure spectral signatures.

Sar

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000				
Linear modeling and	constraints			

The mixing of the constituents can be approximated linearly as

$$\mathbf{X} \approx \mathbf{W}\mathbf{H} + \epsilon,$$
 (1)

where W are the spectral signatures, H denote the fractional abundances (concentrations) and ϵ is the residual white Gaussian noise.

Constraints

Non-Negativity, intensities can not be negative : ►

$$x_{i,j} > 0 \qquad \wedge \qquad w_{i,j} > 0 \qquad \wedge \qquad h_{i,j} > 0 \qquad (2)$$

Additivity, concentrations must sum to one : $\sum_{i} h_{i,i} = 1$ ►

Figure 2 : Linear mixing of spectral signature into observed pixel spectra.

Convex Geometry Model

These constraints lead to the following geometry for the 2 component case.

- Purple vertices are the basis vertices denoted endmembers.
- Red points inside designate valid observed samples.
- Gray points outside are invalid due to noise (constraints violated).

For multiple endmembers the structure becomes an N-simplex.

Objective is to locate the vertices as the basis spectral signatures based only on the observed data (unsupervised learning).

Morten Arngren

Bayesian Non-Negative Matrix Factorization with Volume Prior

ISP, Aug. 2009 6/16

ヨト - ヨト

< 17 ▶

SOC

	Dataset	NMF Model	Bayesian NMF	
000	•	0000	000	00
Hyperspectral Camera				

Data Acquisition

- Hyperspectral image acquired of wheat kernels, front and backside.
- Image is 320 pixels wide with a spectral range from 900-1700nm in 165 bands.
- Light preprocessing incl. spectral correction and kernel segmentation.
- Dataset becomes 8 small images of wheat kernels of size $44 \times 26 \times 152$.

Figure 5 : Hyperspectral images of wheat kernels.

Synthetic Dataset

- True endmember spectra produced from hyperspectral image of pure constituents, protein, starch and oil from 950-1650nm (145 bands).
- ▶ Synthetic dataset includes 2000 samples, i.e. $\mathbf{X} \in \mathbb{R}^{145 \times 2000}$.

Non-negative Matrix Factorization

Linear model $\mathbf{X} = \mathbf{W}\mathbf{H} + \epsilon$ subject to non-negativity constraints (2).

 Regular NMF is not sufficient to capture vertices as likelihood term dominates. Hence additional constraint are required.

Cost function

$$E = \frac{1}{2} ||\mathbf{X} - \mathbf{W}\mathbf{H}||^2 + J_W(\mathbf{W})$$
(3)

Regularizations

- Endmembers W should encourage tight solutions to data simplex.
- Additivity constraint is incorporated as by the *normalization invariance* approach.

Volume Regularization

- Sparsity regularization is not optimal as W are attracted toward origo.
- Volume-based regularization by minimizing a *simplex* volume for K endmembers

$$V_{simplex} = \frac{1}{K!} |\det(\tilde{\mathbf{W}}^T \tilde{\mathbf{W}})|^{1/2},$$

where $\tilde{\boldsymbol{W}}$ are the vectors spanning the simplex.

SOC

	Dataset	NMF Model	Bayesian NMF	Summary
		0000		
Non-Negative Matrix Factoriz	ation with volume regulariz	zation		

Volume Regularization

Subspace volume, [Miao (2007)]

$$\mathbf{J}_{\mathbf{W}}(\mathbf{W}) = \det^{2}(\mathbf{C} + \mathbf{B}\mathbf{U}_{\mathbf{x}}^{T}(\mathbf{X} - \mu)), \qquad (5)$$

where \mathbf{U}_x holds the K-1 most significant PC's. Captures subspace parallelepiped and suppresses noisy directions, but depend on observations \mathbf{X} .

Parallelepiped volume [Schachtner (2009)]

$$\mathbf{J}_{\mathbf{W}}(\mathbf{W}) = \det(\mathbf{W}^{\mathsf{T}}\mathbf{W}) \tag{6}$$

Captures non-simplex shape and is sensitive to mean offset.

Figure 10 : Synthetic dataset.

Figure 11 : No regularization

Figure 12 : Optimal regularization.

- MAP solution captures the endmembers (vertices) with success.
- Optimal regularization also depends on the mixing profile of each endmember.
- Parallelepiped [Schachtner (2009)] and simplex volume approaches superior to subspace volume [Miao (2007)] in terms of convergence speed.

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000	O	○○○●	000	00
Simulations				

Wheat Kernel Dataset

Employed with all types of volume regularizations.

Expect 3 components from PCA plot. Parallelepiped volume regularization:

Morten Arngren

Bayesian Non-Negative Matrix Factorization with Volume Prior

Morten Arngren

Bayesian Non-Negative Matrix Factorization with Volume Prior

ISP, Aug. 2009 12/16

- Bayes modeling offers posterior mode solution with variance estimations.
- ▶ Use MAP solution from NMF as input to Bayesian NMF to reduce burn-in.

 $\exists \rightarrow$

Image: A math a math

590

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
Simulations				
Bayesi	an NMF with v	olume prior		
Wheat k	ernel dataset			
► E	(nect 3 components f	rom PCA plot		

- Posterior mode is not MAP solution.
- Achieve variance estimation not acquired by regular NMF.
- Non-symmetric posterior distribution due to attraction to data points within simplex?

nar

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000	O	0000	000	●0

Summary

Conclusions

- Hyperspectral image can be decomposed efficiently using NMF algorithm with volume regularizations.
- Bayesian framework provide variance estimation leading to confidence intervals of solution.

Current limitations and future work

- Bayesian NMF requires further testing with more sophisticated synthetical data structures.
- Incorporate spatial information.

References

Morten Arngren

< 17 ▶

Sar

Introduction	Dataset	NMF Model	Bayesian NMF	Summary
000	O	0000	000	○●

Thank you for your attention....:-)

DQC