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Outline

» Introduction to hyperspectral image analysis.

» The linear model and the constraint.
» The convex geometry model.

>

» The NMF model with volume regularizations.
» Simulation results.

» Baysian NMF with volume priors.
» Simulation results.
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Introduction
°

Background / Motivation

Hyperspectral Image Analysis

Introduction

» Classic image analysis is usually conducted on photographes having up to 3
RGB colors, sufficient for visualization.

» Hyperspectral images includes multiple color bands, typically > 50 bands and
thus offers a more detailed analysis.

Ansatbance
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Figure 1 : Example of hyperspectral image. Each pixel consist of a 150 band spectra.
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Introduction

» Classic image analysis is usually conducted on photographes having up to 3
RGB colors, sufficient for visualization.

» Hyperspectral images includes multiple color bands, typically > 50 bands and
thus offers a more detailed analysis.

Absarbance
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Figure 1 : Example of hyperspectral image. Each pixel consist of a 150 band spectra.

> The

» The observed spectra is a mix a set of pure components in the subject,
dominated by a linear mixture.

» The objective is hence to decompose the image to into these pure spectral
signatures.
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Introduction
.

Linear modeling and constraints

The mixing of the constituents can be approximated linearly as

X~ WH + ¢, (1)

where W are the spectral signatures, H denote the fractional abundances
(concentrations) and ¢ is the residual white Gaussian noise.
Constraints

» Non-Negativity, intensities can not be negative :

xjj >0 A w;j >0 A hij >0 (2)

» Additivity, concentrations must sum toone: > hj; =1
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Figure 2 : Linear mixing of spectral signature into observed pixel spectra.
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Introduction
°

Data Geometry

Convex Geometry Model
» These constraints lead to the following geometry for the 2 component case. J

4 Spectral signature in W / Observed data
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Figure 3 : Simple mixing with only 2 vertices.

» Purple vertices are the basis vertices denoted endmembers.
» Red points inside designate valid observed samples.

» Gray points outside are invalid due to noise (constraints violated).

For multiple endmembers the structure becomes an N-simplex. )
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Figure 4 : 3- and 4-simplexes.

Objective is to locate the vertices as the basis spectral signatures based only on the
observed data (unsupervised learning). J
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Dataset
.

Hyperspectral Camera

Data Acquisition

>

>
>
| 4

Hyperspectral image acquired of wheat kernels, front and backside.
Image is 320 pixels wide with a spectral range from 900-1700nm in 165 bands.
Light preprocessing incl. spectral correction and kernel segmentation.

Dataset becomes 8 small images of wheat kernels of size 44 x 26 x 152.
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Figure 5 : Hyperspectral images of wheat kernels.

Synthetic Dataset

>

>

True endmember spectra produced from hyperspectral image of pure
constituents, protein, starch and oil from 950-1650nm (145 bands).

Synthetic dataset includes 2000 samples, i.e. X € R145%2000
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Figure 6 : Spectra of food constituents. Figure 7 : Example of synthetic dataset.
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Introduction Dataset NMF Model
foYele) [ Yolele)

Non-Negative Matrix Factorization with volume regularization

Linear model X = WH + € subject to non-negativity constraints (2).
» Regular NMF is not sufficient to capture vertices as likelihood term dominates.
Hence additional constraint are required.

Cost function
_ 1 _ 2

Regularizations E =3I X—WH|" + Jw(W) (3)

» Endmembers W should encourage tight solutions to data simplex.

» Additivity constraint is incorporated as by the normalization invariance
approach.

Volume Regularization
» Sparsity regularization is not optimal as W are
attracted toward origo. /
» Volume-based regularization by minimizing /
a simplex volume for K endmembers / %z
1 TR /2 7=
Vsimplex =K \det(W W)| 5 Et (4)
where W are the vectors spanning the simplex. Figure 8 : The simplex volume.
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NMF Model
oe

Non-Negative Matrix Factorization with volume regularization

Volume Regularization
» Subspace volume, [Miao (2007)]
Jw(W) = det?(C + BU, (X — 1)), (5)

where Uy holds the K — 1 most significant PC's. Captures subspace
parallelepiped and suppresses noisy directions, but depend on observations X.

» Parallelepiped volume [Schachtner (2009)]
Jw(W) = det(WT W) (6)

Captures non-simplex shape and is sensitive to mean offset.

Our NMF algorithm is implemented in a normalization @, b

invariant projected gradient framework. A gradient descent ;
with projections to the non-negative orthant i.e. no - )
multiplicative updates. !
All three types of volume regularizations are implemented é

» Simplex volume (4)
» Subspace volume (5) [Miao (2007)]
> Parallelepiped volume (6) [Schachtner (2009)] Figure 9 : Projected gradient approach.
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NMF Model
o

Simulations

Synthetic Dataset, X € R145%2000,
Employed with different noise levels and all types of volume regularizations.

» Low noise case and simplex volume regularization:

723 422 421 A2 418 18 417 116 18

Figure 10 : Synthetic dataset. Figure 11 : No regularization Figure 12 : Optimal regularization.

» MAP solution captures the endmembers (vertices) with success.
» Optimal regularization also depends on the mixing profile of each endmember.

» Parallelepiped [Schachtner (2009)] and simplex volume approaches superior to
subspace volume [Miao (2007)] in terms of convergence speed.
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NMF Model
°

Simulations

Wheat Kernel Dataset
Employed with all types of volume regularizations.

» Expect 3 components from PCA plot. Parallelepiped volume regularization:

PC1

Figure 13 PCA scatterplot Figure 14 : Captured endmembers.
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Figure 15 : Image components. Figure 16 : Pure spectral signatures.

» Constituents successfully identified: starch, oil and background.

» High correlation between constituents leads to difficult identification.
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Dataset NMF Model Bayesian NMF
o o ®00

The NMF model

Probabilistic modeling of the bilinear NMF model
P(XIW, H, ©)p(W|©)p(H)p(2/©)

P(W, H|X) = (%)

0 = {a, 0%} (7)

The likelihood becomes a Gaussian distribution due to the bilinear NMF model.

N M
p(X‘W7 H,@) = H H N (an‘Wm:H:moj) 5 (8)
n=1m=1

The non-negative priors are given by

exp (— ydet(WTW))  w, >0
) e { 0 otherwise.

K
p(H\G))oc 1 hg, 20, thnzl
k=1
0 otherwise.

Our Bayesian NMF model implemented in a Gibbs sampling framework.
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Bayesian NMF
°

Simulations

Synthetic Dataset, X € R3%3000,
Employed with low noise level.

» Comparing with regular NMF volume regularized:

mve

Tda 0 07

pct
Figure 19 : Subspace projection regularization.
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Figure 20 : Parallelepiped regularization. Figure 21 : Bayesian volume NMF.

» Bayes modeling offers posterior mode solution with variance estimations.
» Use MAP solution from NMF as input to Bayesian NMF to reduce burn-in.
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Bayesian NMF
°

Simulations

Wheat kernel dataset

» Expect 3 components from PCA plot.
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Figure 22 : Bayesian volume NMF applied on wheat kernel dataset.

» Posterior mode is not MAP solution.

v

Achieve variance estimation not acquired by regular NMF.

» Non-symmetric posterior distribution - due to attraction to data points within
simplex?
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duction

Summary
0

Hyperspectral image can be decomposed efficiently using NMF algorithm with
volume regularizations.

Bayesian framework provide variance estimation leading to confidence intervals
of solution.

Bayesian NMF requires further testing with more sophisticated synthetical data
structures.

Incorporate spatial information.
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Summary

oe

Thank you for your attention....:-)
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