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Abstract. In this paper we present an exploratory analysis of hyper-
spectral 900-1700 nm images of maize kernels. The imaging device is
a line scanning hyper spectral camera using a broadband NIR illumi-
nation. In order to explore the hyperspectral data we compare a series
of subspace projection methods including principal component analysis
and maximum autocorrelation factor analysis. The latter utilizes the fact
that interesting phenomena in images exhibit spatial autocorrelation.
However, linear projections often fail to grasp the underlying variability
on the data. Therefore we propose to use so-called kernel version of the
two afore-mentioned methods. The kernel methods implicitly transform
the data to a higher dimensional space using non-linear transformations
while retaining the computational complexity. Analysis on our data ex-
ample illustrates that the proposed kernel maximum autocorrelation fac-
tor transform outperform the linear methods as well as kernel principal
components in producing interesting projections of the data.

1 Introduction

Based on work by Pearson [1] in 1901, Hotelling [2] in 1933 introduced principal
component analysis (PCA). PCA is often used for linear orthogonalization or
compression by dimensionality reduction of correlated multivariate data, see
Jolliffe [3] for a comprehensive description of PCA and related techniques.

An interesting dilemma in reduction of dimensionality of data is the desire
to obtain simplicity for better understanding, visualization and interpretation of
the data on the one hand, and the desire to retain sufficient detail for adequate
representation on the other hand.

Schölkopf et al. [4] introduce kernel PCA. Shawe-Taylor and Cristianini [5] is
an excellent reference for kernel methods in general. Bishop [6] and Press et al. [7]
describe kernel methods among many other subjects.
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The kernel version of PCA handles nonlinearities by implicitly transforming
data into high (even infinite) dimensional feature space via the kernel function
and then performing a linear analysis in that space.

The maximum autocorrelation factor (MAF) transform proposed by Switzer
[11] defines maximum spatial autocorrelation as the optimality criterion for ex-
tracting linear combinations of multispectral images. Contrary to this PCA seeks
linear combinations that exhibit maximum variance. Because the interesting phe-
nomena in image data often exhibit some sort of spatial coherence spatial auto-
correlation is often a better optimality criterion than variance. A kernel version
of the MAF transform has been proposed by Nielsen [10].

In this paper we shall apply kernel MAF as well as kernel PCA and ordinary
PCA and MAF to find interesting projections of hyperspectral images of maize
kernels.

2 Data Acquisition

A hyperspectral line-scan NIR camera from Headwall Photonics sensitive from
900-1700nm was used to capture the hyperspectral image data. A dedicated
NIR light source illuminates the sample uniformly along the scan line and an
advanced optic system developed by Headwall Photonics disperses the NIR light
onto the camera sensor for acquisition. A sledge from MICOS GmbH moves the
sample past the view slot of the camera allowing it to acquire a hyperspectral
image. In order to separate the different wavelengths an optical system based on
the Offner principle is used. It consists of a set of mirrors and gratings to guide
and spread the incoming light into a range of wavelengths, which are projected
onto the InGaAs sensor.

The sensor has a resolution of 320 spatial pixels and 256 spectral pixels, i.e.
a physical resolution of 320× 256 pixels. Due to the Offner dispersion principle
(the convex grating) not all the light is in focus over the entire dispersed range.
This means that if the light were dispersed over the whole 256 pixel wide sensor
the wavelengths at the periphery would be out of focus. In order to avoid this
the light is only projected onto 165 pixels instead and the top 91 pixels are
disregarded. This choice is a trade-off between spatial sampling resolution and
focus quality of the image.

The camera acquires 320 pixels and 165 bands for each frame. The pixels are
represented in 14 bit resolution with 10 effective bits In Fig. 1 average spectra
for a white reference and dark background current images are shown. Note the
limited response in the 900-950 nm range.

Before the image cube is subjected to the actual processing a few pre-
processing step are conducted. Initially the image is corrected for the refer-
ence light and dark background current. A reference and dark current image
are acquired and the mean frame is applied for the correction. In our case the
hyperspectral data are kept as reflectance spectra throughout the analysis.
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Fig. 1. Average spectra for white reference and dark background current images

2.1 Grain Samples Dataset

For the quantitative evaluation of the kernel MAF method a hyperspectral image
of eight maize kernels is used as the dataset. The hyperspectral image of the
maize samples are comprised of the front and back-side of the kernels on a black
background (NCS-9000) appended as two separate cropped images as depicted
in Fig. 2(a). In Fig. 2(b) an example spectrum is shown. The kernels are not

Pseudo RGB image of maize kernels
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Fig. 2. (a) Front (left) and back (right) images of eight maize kernels on a dark back-
ground. The color image is constructed as an RGB combination of NIR bands 150, 75,
and 1; (b) reflectance spectrum of the pixel marked with red circle in (a).

Fig. 3. Maize kernel constituents front- and backside (pseudo RGB)
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fresh from harvest and hence have a very low water content and are in addition
free from any infections. Many cereals in general share the same compounds and
basic structure. In our case of maize a single kernel can be divided into many
different constituents on the macroscopic level as illustrated in Fig. 3.

In general, the structural components of cereals can be divided into three
classes denoted Endosperm, Germ and Pedicel. These components have different
functions and compounds leading to different spectral profiles as described below.

Endosperm. The endosperm is the main storage for starch (∼66%), protein
(∼11%) and water (∼14%) in cereals. Starch being the main constituent is a
carbohydrate and consists of two different glucans named Amylose and Amy-
lopectin. The main part of the protein in the endosperm consists of zein and
glutenin. The starch in maize grains can be further divided into a soft and a
hard section depending on the binding with the protein matrix. These two types
of starch are typically mutually exclusive, but in maize grain they both appear
as a special case as also illustrated in figure 3.

Germ. The germ of a cereal is the reproductive part that germinates to grow
into a plant. It is the embryo of the seed, where the scutellum serves to ab-
sorb nutrients from the endosperm during germination. It is a section holding
proteins, sugars, lipids, vitamins and minerals [13].

Pedicel. The pedicel is the flower stalk and has negligible interest in terms
of production use. For a more detailed description of the general structure of
cereals [12].

3 Principal Component Analysis

Let us consider an image with n observations or pixels and p spectral bands
organized as a matrix X with n rows and p columns; each column contains
measurements over all pixels from one spectral band and each row consists of a
vector of measurements xT

i from p spectral bands for a particular observation
X = [xT

1 xT
2 . . . xT

n ]T . Without loss of generality we assume that the spectral
bands in the columns of X have mean value zero.

3.1 Primal Formulation

In ordinary (primal also known as R-mode) PCA we analyze the sample variance-
covariance matrix S = XT X/(n − 1) = 1/(n − 1)

∑n
i=1 xix

T
i which is p by p. If

XT X is full rank r = min(n, p) this will lead to r non-zero eigenvalues λi and
r orthogonal or mutually conjugate unit length eigenvectors ui (uT

i ui = 1) from
the eigenvalue problem

1
n − 1

XT Xui = λiui. (1)

We see that the sign of ui is arbitrary. To find the principal component scores for
an observation x we project x onto the eigenvectors, xT ui. The variance of these
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scores is uT
i Sui = λiu

T
i ui = λi which is maximized by solving the eigenvalue

problem.

3.2 Dual Formulation

In the dual formulation (also known as Q-mode analysis) we analyze XXT /(n−
1) which is n by n and which in image applications can be very large. Multiply
both sides of Equation 1 from the left with X

1
n − 1

XXT (Xui) = λi(Xui) or
1

n − 1
XXT vi = λivi (2)

with vi proportional to Xui, vi ∝ Xui, which is normally not normed to unit
length if ui is. Now multiply both sides of Equation 2 from the left with XT

1
n − 1

XT X(XT vi) = λi(XT vi) (3)

to show that ui ∝ XT vi is an eigenvector of S with eigenvalue λi. We scale
these eigenvectors to unit length assuming that vi are unit vectors
ui = XT vi/

√
(n − 1)λi.

We see that if XT X is full rank r = min(n, p), XT X/(n−1) and XXT /(n−1)
have the same r non-zero eigenvalues λi and that their eigenvectors are related
by ui = XT vi/

√
(n − 1)λi and vi = Xui/

√
(n − 1)λi. This result is closely

related to the Eckart-Young [8,9] theorem.
An obvious advantage of the dual formulation is the case where n < p. Another

advantage even for n � p is due to the fact that the elements of the matrix
G = XXT , which is known as the Gram1 matrix, consist of inner products of
the multivariate observations in the rows of X , xT

i xj .

3.3 Kernel Formulation

We now replace x by φ(x) which maps x nonlinearly into a typically higher
dimensional feature space. The mapping by φ takes X into Φ which is an n
by q (q ≥ p) matrix, i.e. Φ = [φ(x1)T φ(x2)T . . . φ(xn)T ]T we assume that the
mappings in the columns of Φ have zero mean. In this higher dimensional feature
space C = ΦT Φ/(n−1) = 1/(n−1)

∑n
i=1 φ(xi)φ(xi)T is the variance-covariance

matrix and for PCA we get the primal formulation 1/(n−1)ΦT Φui = λiui where
we have re-used the symbols λi and ui from above. For the corresponding dual
formulation we get re-using the symbol vi from above

1
n − 1

ΦΦT vi = λivi. (4)

As above the non-zero eigenvalues for the primal and the dual formulations
are the same and the eigenvectors are related by ui = 1/(

√
(n − 1)λi) ΦT vi, and

vi = Φ ui/
√

(n − 1)λi. Here ΦΦT plays the same role as the Gram matrix above
and has the same size, namely n by n (so introducing the nonlinear mappings
in φ does not make the eigenvalue problem in Equation 4 bigger).
1 Named after Danish mathematician Jørgen Pedersen Gram (1850-1916).
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Kernel Substitution. Applying kernel substitution also known as the kernel
trick we replace the inner products φ(xi)T φ(xj) in ΦΦT with a kernel function
κ(xi, xj) = κij which could have come from some unspecified mapping φ. In this
way we avoid the explicit mapping φ of the original variables. We obtain

Kvi = (n − 1)λivi (5)

where K = ΦΦT is an n by n matrix with elements κ(xi, xj). To be a valid
kernel K must be symmetric and positive semi-definite, i.e., its eigenvalues are
non-negative. Normally the eigenvalue problem is formulated without the factor
n − 1

Kvi = λivi. (6)

This gives the same eigenvectors vi and eigenvalues n − 1 times greater. In this
case ui = ΦT vi/

√
λi and vi = Φui/

√
λi.

Basic Properties. Several basic properties including the norm in feature space,
the distance between observations in feature space, the norm of the mean in
feature space, centering to zero mean in feature space, and standardization to
unit variance in feature space, may all be expressed in terms of the kernel function
without using the mapping by φ explicitly [5,6,10].

Projections onto Eigenvectors. To find the kernel principal component
scores from the eigenvalue problem in Equation 6 we project a mapped x onto
the primal eigenvector ui

φ(x)T ui = φ(x)T ΦT vi/
√

λi = φ(x)T
[
φ(x1) φ(x2) · · · φ(xn)

]
vi/

√
λi

=
[
κ(x, x1) κ(x, x2) · · · κ(x, xn)

]
vi/

√
λi, (7)

or in matrix notation ΦU = KV Λ−1/2 (U is a matrix with ui in the columns,
V is a matrix with vi in the columns and Λ−1/2 is a diagonal matrix with
elements 1/

√
λi), i.e., also the projections may be expressed in terms of the

kernel function without using φ explicitly. If the mapping by φ is not column
centered the variance of the projection must be adjusted, cf. [5,6].

Kernel PCA is a so-called memory-based method: from Equation 7 we see
that if x is a new data point that did not go into building the model, i.e., finding
the eigenvectors and -values, we need the original data x1, x2, . . . , xn as well as
the eigenvectors and -values to find scores for the new observations. This is not
the case for ordinary PCA where we do not need the training data to project
new observations.

Some Popular Kernels. Popular choices for the kernel function are station-
ary kernels that depend on the vector difference xi − xj only (they are therefore
invariant under translation in feature space), κ(xi, xj) = κ(xi − xj), and homo-
geneous kernels also known as radial basis functions (RBFs) that depend on the
Euclidean distance between xi and xj only, κ(xi, xj) = κ(‖xi − xj‖). Some of
the most often used RBFs are (h = ‖xi − xj‖)
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– multiquadric: κ(h) = (h2 + h2
0)

1/2,
– inverse multiquadric: κ(h) = (h2 + h2

0)−1/2,
– thin-plate spline: κ(h) = h2 log(h/h0), or
– Gaussian: κ(h) = exp(− 1

2 (h/h0)2),

where h0 is a scale parameter to be chosen. Generally, h0 should be chosen larger
than a typical distance between samples and smaller than the size of the study
area.

4 Maximum Autocorrelation Factor Analysis

In maximum autocorrelation factor (MAF) analysis we maximize the autocorre-
lation of linear combinations, aT x(r), of zero-mean original (spatial) variables,
x(r). x(r) is a multivariate observation at location r and x(r + Δ) is an ob-
servation of the same variables at location r + Δ; Δ is a spatial displacement
vector.

4.1 Primal Formulation

The autocovariance R of a linear combination aT x(r) of zero-mean x(r) is

R = Cov{aT x(r), aT x(r + Δ)} (8)
= aT Cov{x(r), x(r + Δ)}a (9)
= aT CΔa (10)

where CΔ is the covariance between x(r) and x(r + Δ). Assuming or imposing
second order stationarity of x(r), CΔ is independent of location, r. Introduce the
multivariate difference xΔ(r) = x(r)−x(r +Δ) with variance-covariance matrix
SΔ = 2 S − (CΔ + CT

Δ) where S is the variance-covariance matrix of x defined
in Section 3. Since

aT CΔa = (aT CΔa)T (11)
= aT CT

Δa (12)
= aT (CΔ + CT

Δ)a/2 (13)

we obtain

R = aT (S − SΔ/2)a. (14)

To get the autocorrelation ρ of the linear combination we divide the covariance
by its variance aT Sa

ρ = 1 − 1
2

aT SΔa

aT Sa
(15)

= 1 − 1
2

aT XT
ΔXΔa

aT XT Xa
(16)
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where the n by p data matrix X is defined in Section 3 and XΔ is a similarly de-
fined matrix for xΔ with zero-mean columns. CΔ above equals XT XΔ/(n−1). To
maximize ρ we must minimize the Rayleigh coefficient aT XT

ΔXΔa/(aT XT Xa)
or maximize its inverse.

Unlike linear PCA, the result from linear MAF analysis is scale invariant: if
xi is replaced by some matrix transformation Txi corresponding to replacing X
by XT , the result is the same.

4.2 Kernel MAF

As with the principal component analysis we use the kernel trick to obtain an
implicit non-linear mapping for the MAF transform. A detailed account of this
is given in [10].

5 Results and Discussion

To be able to carry out kernel MAF and PCA on the large amounts of pixels
present in the image data, we sub-sample the image and use a small portion
termed the training data only. We typically use in the order 103 training pixels
(here ∼3,000) to find the eigenvectors onto which we then project the entire
image termed the test data kernelized with the training data. A Gaussian kernel
κ(xi, xj) = exp(−‖xi − xj‖2/2σ2) with σ equal to the mean distance between
the training observations in feature space is used.

(a) PC1, PC2, PC3 (b) PC4, PC5, PC6

(c) MAF1, MAF2, MAF3 (d) MAF4, MAF5, MAF6

Fig. 4. Linear principal component projections of front and back sides of 8 maize
kernels shown as RGB combination of factors (1,2,3) and (4,5,6) (two top panels), and
corresponding linear maximum autocorrelation factor projections (bottom two panels)
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(a) kPC1, kPC2, kPC3 (b) kPC4, kPC5, kPC6

(c) kMAF1, kMAF2, kMAF3 (d) kMAF4, kMAF5, kMAF6

Fig. 5. Non-linear kernel principal component projections of front and back sides of 8
maize kernel shown as RGB combination of factors (1,2,3) and (4,5,6) (two top pan-
els), and corresponding non-linear kernel maximum autocorrelation factor projections
(bottom two panels)

In Fig. 4 linear PCA and MAF components are shown as RGB combination
of factors (1,2,3) and (4,5,6) are shown. The presented images are scaled linearly
between ±3 standard deviations. The linear transforms both struggle with the
background noise, local illumination and shadow effects, i.e., all these effects are
enhanced in some of the first 6 factors. Also the linear methods fail in labeling
the same kernel parts in same colors. On the other hand the kernel based factors
shown in Fig. 5 have a significantly better ability to suppress background noise,
illumination variation and shadow effect. In fact this is most pronounced in the
kernel MAF projections. When comparing kernel PCA and kernel MAF the most
striking difference is the ability of the kernel MAF transform to provide same
color labeling of different maize kernel parts across all grains.

6 Conclusion

In this preliminary work on finding interesting projections of hyperspectral near
infrared imagery of maize kernels we have demonstrated that non-linear kernel
based techniques implementing kernel versions of principal component analy-
sis and maximum autocorrelation factor analysis outperform the linear variants
by their ability to suppress background noise, illumination and shadow effects.
Moreover, the kernel maximum autocorrelation factors transform provides a su-
perior projection in terms of labeling different maize kernels parts with same
color.



Kernel Analysis of Kernels 569

References

1. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosof-
ical Magazine 2(3), 559–572 (1901)

2. Hotelling, H.: Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology 24, 417–441, 498–520 (1933)

3. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)
4. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)
5. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press, Cambridge (2004)
6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg

(2006)
7. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:

The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge
(2007)

8. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psykometrika 1, 211–218 (1936)

9. Johnson, R.M.: On a theorem stated by Eckart and Young. Psykometrika 28(3),
259–263 (1963)

10. Nielsen, A.A.: Kernel minimum noise fraction transformation (2008) (submitted)
11. Switzer, P.: Min/Max Autocorrelation factors for Multivariate Spatial Imagery. In:

Billard, L. (ed.) Computer Science and Statistics, pp. 13–16 (1985)
12. Hoseney, R.C.: Principles of Cereal Science and Technology. American Association

of Cereal Chemists (1994)
13. Belitz, H.-D., Grosch, W., Schieberle, P.: Food Chemistry, 3rd edn. Springer, Hei-

delberg (2004)


	Kernel Based Subspace Projection of Near Infrared Hyperspectral Images of Maize Kernels
	Introduction
	Data Acquisition
	Grain Samples Dataset

	Principal Component Analysis
	Primal Formulation
	Dual Formulation
	Kernel Formulation

	Maximum Autocorrelation Factor Analysis
	Primal Formulation
	Kernel MAF

	Results and Discussion
	Conclusion
	References


